Displaying similar documents to “Ergodic automorphisms whose weak closure of off-diagonal measures consists of ergodic self-joinings”

Spectral properties of ergodic dynamical systems conjugate to their composition squares

Geoffrey R. Goodson (2007)

Colloquium Mathematicae

Similarity:

Let S and T be automorphisms of a standard Borel probability space. Some ergodic and spectral consequences of the equation ST = T²S are given for T ergodic and also when Tⁿ = I for some n>2. These ideas are used to construct examples of ergodic automorphisms S with oscillating maximal spectral multiplicity function. Other examples illustrating the theory are given, including Gaussian automorphisms having simple spectra and conjugate to their squares.

Hopf's ratio ergodic theorem by inducing

Roland Zweimüller (2004)

Colloquium Mathematicae

Similarity:

We present a very quick and easy proof of the classical Stepanov-Hopf ratio ergodic theorem, deriving it from Birkhoff's ergodic theorem by a simple inducing argument.

A property of ergodic flows

Maria Joiţa, Radu-B. Munteanu (2014)

Studia Mathematica

Similarity:

We introduce a property of ergodic flows, called Property B. We prove that an ergodic hyperfinite equivalence relation of type III₀ whose associated flow has this property is not of product type. A consequence is that a properly ergodic flow with Property B is not approximately transitive. We use Property B to construct a non-AT flow which-up to conjugacy-is built under a function with the dyadic odometer as base automorphism.

On subrelations of ergodic measured type III equivalence relations

Alexandre Danilenko (2000)

Colloquium Mathematicae

Similarity:

We discuss the classification up to orbit equivalence of inclusions 𝑆 ⊂ ℛ of measured ergodic discrete hyperfinite equivalence relations. In the case of type III relations, the orbit equivalence classes of such inclusions of finite index are completely classified in terms of triplets consisting of a transitive permutation group G on a finite set (whose cardinality is the index of 𝑆 ⊂ ℛ), an ergodic nonsingular ℝ-flow V and a homomorphism of G to the centralizer of V.

Operators with an ergodic power

Teresa Bermúdez, Manuel González, Mostafa Mbekhta (2000)

Studia Mathematica

Similarity:

We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.

Conjugacies between ergodic transformations and their inverses

Geoffrey Goodson (2000)

Colloquium Mathematicae

Similarity:

We study certain symmetries that arise when automorphisms S and T defined on a Lebesgue probability space (X, ℱ, μ) satisfy the equation S T = T - 1 S . In an earlier paper [6] it was shown that this puts certain constraints on the spectrum of T. Here we show that it also forces constraints on the spectrum of S 2 . In particular, S 2 has to have a multiplicity function which only takes even values on the orthogonal complement of the subspace f L 2 ( X , , μ ) : f ( T 2 x ) = f ( x ) . For S and T ergodic satisfying this equation further constraints...