Operators with an ergodic power

Teresa Bermúdez; Manuel González; Mostafa Mbekhta

Studia Mathematica (2000)

  • Volume: 141, Issue: 3, page 201-208
  • ISSN: 0039-3223

Abstract

top
We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.

How to cite

top

Bermúdez, Teresa, González, Manuel, and Mbekhta, Mostafa. "Operators with an ergodic power." Studia Mathematica 141.3 (2000): 201-208. <http://eudml.org/doc/216779>.

@article{Bermúdez2000,
abstract = {We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.},
author = {Bermúdez, Teresa, González, Manuel, Mbekhta, Mostafa},
journal = {Studia Mathematica},
keywords = {Cesàro means; ergodic},
language = {eng},
number = {3},
pages = {201-208},
title = {Operators with an ergodic power},
url = {http://eudml.org/doc/216779},
volume = {141},
year = {2000},
}

TY - JOUR
AU - Bermúdez, Teresa
AU - González, Manuel
AU - Mbekhta, Mostafa
TI - Operators with an ergodic power
JO - Studia Mathematica
PY - 2000
VL - 141
IS - 3
SP - 201
EP - 208
AB - We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.
LA - eng
KW - Cesàro means; ergodic
UR - http://eudml.org/doc/216779
ER -

References

top
  1. [1] T. Bermúdez, M. González and A. Martinón, On the poles of the local resolvent, Math. Nachr. 193 (1998), 19-26. Zbl0918.47008
  2. [2] T. Bermúdez, M. González and M. Mbekhta, Local ergodic theorems, Extracta Math. 13 (1997), 243-248. 
  3. [3] T. Bermúdez and A. Martinón, On Neumann operators, J. Math. Anal. Appl. 200 (1996), 698-707. Zbl0870.47001
  4. [4] L. Burlando, A generalization of the uniform ergodic theorem to poles of arbitrary order, Studia Math. 122 (1997), 75-98. Zbl0869.47007
  5. [5] I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, 1968. 
  6. [6] D. Drissi, On a theorem of Gelfand and its local generalizations, Studia Math. 123 (1997), 185-194. Zbl0894.47018
  7. [7] N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. Zbl0063.01185
  8. [8] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, Berlin, 1985. 
  9. [9] K. B. Laursen and M. Mbekhta, Operators with finite chain length and the ergodic theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448. Zbl0849.47008
  10. [10] M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158. 
  11. [11] M. Radjabalipour, Decomposable operators, Bull. Iranian Math. Soc. 9 (1978), 1L-49L. Zbl0696.47032
  12. [12] R. Sine, A note on the ergodic properties of homeomorphisms, Proc. Amer. Math. Soc. 57 (1976), 169-172. Zbl0333.54027
  13. [13] A. C. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, New York, 1980. Zbl0501.46003
  14. [14] H.-D. Wacker, Über die Verallgemeinerung eines Ergodensatzes von Dunford, Arch. Math. (Basel) 44 (1985), 539-546. Zbl0555.47008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.