Operators with an ergodic power
Teresa Bermúdez; Manuel González; Mostafa Mbekhta
Studia Mathematica (2000)
- Volume: 141, Issue: 3, page 201-208
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBermúdez, Teresa, González, Manuel, and Mbekhta, Mostafa. "Operators with an ergodic power." Studia Mathematica 141.3 (2000): 201-208. <http://eudml.org/doc/216779>.
@article{Bermúdez2000,
abstract = {We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.},
author = {Bermúdez, Teresa, González, Manuel, Mbekhta, Mostafa},
journal = {Studia Mathematica},
keywords = {Cesàro means; ergodic},
language = {eng},
number = {3},
pages = {201-208},
title = {Operators with an ergodic power},
url = {http://eudml.org/doc/216779},
volume = {141},
year = {2000},
}
TY - JOUR
AU - Bermúdez, Teresa
AU - González, Manuel
AU - Mbekhta, Mostafa
TI - Operators with an ergodic power
JO - Studia Mathematica
PY - 2000
VL - 141
IS - 3
SP - 201
EP - 208
AB - We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.
LA - eng
KW - Cesàro means; ergodic
UR - http://eudml.org/doc/216779
ER -
References
top- [1] T. Bermúdez, M. González and A. Martinón, On the poles of the local resolvent, Math. Nachr. 193 (1998), 19-26. Zbl0918.47008
- [2] T. Bermúdez, M. González and M. Mbekhta, Local ergodic theorems, Extracta Math. 13 (1997), 243-248.
- [3] T. Bermúdez and A. Martinón, On Neumann operators, J. Math. Anal. Appl. 200 (1996), 698-707. Zbl0870.47001
- [4] L. Burlando, A generalization of the uniform ergodic theorem to poles of arbitrary order, Studia Math. 122 (1997), 75-98. Zbl0869.47007
- [5] I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, 1968.
- [6] D. Drissi, On a theorem of Gelfand and its local generalizations, Studia Math. 123 (1997), 185-194. Zbl0894.47018
- [7] N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. Zbl0063.01185
- [8] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, Berlin, 1985.
- [9] K. B. Laursen and M. Mbekhta, Operators with finite chain length and the ergodic theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448. Zbl0849.47008
- [10] M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155-1158.
- [11] M. Radjabalipour, Decomposable operators, Bull. Iranian Math. Soc. 9 (1978), 1L-49L. Zbl0696.47032
- [12] R. Sine, A note on the ergodic properties of homeomorphisms, Proc. Amer. Math. Soc. 57 (1976), 169-172. Zbl0333.54027
- [13] A. C. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, New York, 1980. Zbl0501.46003
- [14] H.-D. Wacker, Über die Verallgemeinerung eines Ergodensatzes von Dunford, Arch. Math. (Basel) 44 (1985), 539-546. Zbl0555.47008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.