The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The solution of the Tame Generators Conjecture according to Shestakov and Umirbaev”

Wild Multidegrees of the Form (d,d₂,d₃) for Fixed d ≥ 3

Marek Karaś, Jakub Zygadło (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let d be any integer greater than or equal to 3. We show that the intersection of the set mdeg(Aut(ℂ³))∖ mdeg(Tame(ℂ³)) with {(d₁,d₂,d₃) ∈ (ℕ ₊)³: d = d₁ ≤ d₂≤ d₃} has infinitely many elements, where mdeg h = (deg h₁,...,deg hₙ) denotes the multidegree of a polynomial mapping h = (h₁,...,hₙ): ℂⁿ → ℂⁿ. In other words, we show that there are infinitely many wild multidegrees of the form (d,d₂,d₃), with fixed d ≥ 3 and d ≤ d₂ ≤ d₃, where a sequence (d₁,...,dₙ)∈ ℕ ⁿ is a wild multidegree...

Tame Automorphisms of ℂ³ with Multidegree of the Form (p₁,p₂,d₃)

Marek Karaś (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let d₃ ≥ p₂ > p₁ ≥ 3 be integers such that p₁,p₂ are prime numbers. We show that the sequence (p₁,p₂,d₃) is the multidegree of some tame automorphism of ℂ³ if and only if d₃ ∈ p₁ℕ + p₂ℕ, i.e. if and only if d₃ is a linear combination of p₁ and p₂ with coefficients in ℕ.

Multidegrees of tame automorphisms of ℂⁿ

Marek Karaś

Similarity:

Let F = (F₁,...,Fₙ): ℂⁿ → ℂⁿ be a polynomial mapping. By the multidegree of F we mean mdeg F = (deg F₁, ..., deg Fₙ) ∈ ℕ ⁿ. The aim of this paper is to study the following problem (especially for n = 3): for which sequence (d₁,...,dₙ) ∈ ℕ ⁿ is there a tame automorphism F of ℂⁿ such that mdeg F = (d₁,..., dₙ)? In other words we investigate the set mdeg(Tame(ℂⁿ)), where Tame(ℂⁿ) denotes the group of tame automorphisms of ℂⁿ. Since mdeg(Tame(ℂⁿ)) is invariant under permutations of coordinates,...

Polynomial automorphisms over finite fields: Mimicking tame maps by the Derksen group

Maubach, Stefan, Willems, Roel (2011)

Serdica Mathematical Journal

Similarity:

2010 Mathematics Subject Classification: 14L99, 14R10, 20B27. If F is a polynomial automorphism over a finite field Fq in dimension n, then it induces a permutation pqr(F) of (Fqr)n for every r О N*. We say that F can be “mimicked” by elements of a certain group of automorphisms G if there are gr О G such that pqr(gr) = pqr(F). Derksen’s theorem in characteristic zero states that the tame automorphisms in dimension n і 3 are generated by the affine maps and the one map (x1+x22,...

Polynomial Automorphisms Over Finite Fields

Maubach, Stefan (2001)

Serdica Mathematical Journal

Similarity:

It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).

On reconstruction of polynomial automorphisms

Paweł Gniadek (1996)

Annales Polonici Mathematici

Similarity:

We extend results on reconstructing a polynomial automorphism from its restriction to the coordinate hyperplanes to some wider class of algebraic surfaces. We show that the algorithm proposed by M. Kwieciński in [K2] and based on Gröbner bases works also for this class of surfaces.

On the automorphism group of the countable dense circular order

J. K. Truss (2009)

Fundamenta Mathematicae

Similarity:

Let (C,R) be the countable dense circular ordering, and G its automorphism group. It is shown that certain properties of group elements are first order definable in G, and these results are used to reconstruct C inside G, and to demonstrate that its outer automorphism group has order 2. Similar statements hold for the completion C̅.