Displaying similar documents to “The solution of the Tame Generators Conjecture according to Shestakov and Umirbaev”

Wild Multidegrees of the Form (d,d₂,d₃) for Fixed d ≥ 3

Marek Karaś, Jakub Zygadło (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let d be any integer greater than or equal to 3. We show that the intersection of the set mdeg(Aut(ℂ³))∖ mdeg(Tame(ℂ³)) with {(d₁,d₂,d₃) ∈ (ℕ ₊)³: d = d₁ ≤ d₂≤ d₃} has infinitely many elements, where mdeg h = (deg h₁,...,deg hₙ) denotes the multidegree of a polynomial mapping h = (h₁,...,hₙ): ℂⁿ → ℂⁿ. In other words, we show that there are infinitely many wild multidegrees of the form (d,d₂,d₃), with fixed d ≥ 3 and d ≤ d₂ ≤ d₃, where a sequence (d₁,...,dₙ)∈ ℕ ⁿ is a wild multidegree...

Tame Automorphisms of ℂ³ with Multidegree of the Form (p₁,p₂,d₃)

Marek Karaś (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let d₃ ≥ p₂ > p₁ ≥ 3 be integers such that p₁,p₂ are prime numbers. We show that the sequence (p₁,p₂,d₃) is the multidegree of some tame automorphism of ℂ³ if and only if d₃ ∈ p₁ℕ + p₂ℕ, i.e. if and only if d₃ is a linear combination of p₁ and p₂ with coefficients in ℕ.

Multidegrees of tame automorphisms of ℂⁿ

Marek Karaś

Similarity:

Let F = (F₁,...,Fₙ): ℂⁿ → ℂⁿ be a polynomial mapping. By the multidegree of F we mean mdeg F = (deg F₁, ..., deg Fₙ) ∈ ℕ ⁿ. The aim of this paper is to study the following problem (especially for n = 3): for which sequence (d₁,...,dₙ) ∈ ℕ ⁿ is there a tame automorphism F of ℂⁿ such that mdeg F = (d₁,..., dₙ)? In other words we investigate the set mdeg(Tame(ℂⁿ)), where Tame(ℂⁿ) denotes the group of tame automorphisms of ℂⁿ. Since mdeg(Tame(ℂⁿ)) is invariant under permutations of coordinates,...

Polynomial automorphisms over finite fields: Mimicking tame maps by the Derksen group

Maubach, Stefan, Willems, Roel (2011)

Serdica Mathematical Journal

Similarity:

2010 Mathematics Subject Classification: 14L99, 14R10, 20B27. If F is a polynomial automorphism over a finite field Fq in dimension n, then it induces a permutation pqr(F) of (Fqr)n for every r О N*. We say that F can be “mimicked” by elements of a certain group of automorphisms G if there are gr О G such that pqr(gr) = pqr(F). Derksen’s theorem in characteristic zero states that the tame automorphisms in dimension n і 3 are generated by the affine maps and the one map (x1+x22,...

Polynomial Automorphisms Over Finite Fields

Maubach, Stefan (2001)

Serdica Mathematical Journal

Similarity:

It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).

On reconstruction of polynomial automorphisms

Paweł Gniadek (1996)

Annales Polonici Mathematici

Similarity:

We extend results on reconstructing a polynomial automorphism from its restriction to the coordinate hyperplanes to some wider class of algebraic surfaces. We show that the algorithm proposed by M. Kwieciński in [K2] and based on Gröbner bases works also for this class of surfaces.

On the automorphism group of the countable dense circular order

J. K. Truss (2009)

Fundamenta Mathematicae

Similarity:

Let (C,R) be the countable dense circular ordering, and G its automorphism group. It is shown that certain properties of group elements are first order definable in G, and these results are used to reconstruct C inside G, and to demonstrate that its outer automorphism group has order 2. Similar statements hold for the completion C̅.