On Borel, Baire and Lebesgue sets.
A. Abian (1979)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
A. Abian (1979)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Menachem Kojman, Henryk Michalewski (2011)
Fundamenta Mathematicae
Similarity:
We prove: 1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension. 2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension. Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.
Tibor Šalát (1999)
Matematički Vesnik
Similarity:
Hiroshi Fujita, Tamás Mátrai (2010)
Fundamenta Mathematicae
Similarity:
If an atomlessly measurable cardinal exists, then the class of Lebesgue measurable functions, the class of Borel functions, and the Baire classes of all orders have the difference property. This gives a consistent positive answer to Laczkovich's Problem 2 [Acta Math. Acad. Sci. Hungar. 35 (1980)]. We also give a complete positive answer to Laczkovich's Problem 3 concerning Borel functions with Baire-α differences.
Zbigniew Grande (2009)
Colloquium Mathematicae
Similarity:
Let I ⊂ ℝ be an open interval and let A ⊂ I be any set. Every Baire 1 function f: I → ℝ coincides on A with a function g: I → ℝ which is simultaneously approximately continuous and quasicontinuous if and only if the set A is nowhere dense and of Lebesgue measure zero.
Zdena Riečanová (1974)
Matematický časopis
Similarity:
A. H. Stone
Similarity:
CONTENTS1. Introduction.................................................................................. 32. Baire spaces................................................................................ 53. The basic theorem..................................................................... 94. Cardinality properties; invariance of weight........................... 165. Classification of absolute Borel sets..................................... 226. Characterizations..........................................................................
Roy O. Davies (1973)
Časopis pro pěstování matematiky
Similarity: