Displaying similar documents to “A Hilbert-type integral inequality with a hybrid kernel and its applications”

Squaring a reverse AM-GM inequality

Minghua Lin (2013)

Studia Mathematica

Similarity:

Let A, B be positive operators on a Hilbert space with 0 < m ≤ A, B ≤ M. Then for every unital positive linear map Φ, Φ²((A + B)/2) ≤ K²(h)Φ²(A ♯ B), and Φ²((A+B)/2) ≤ K²(h)(Φ(A) ♯ Φ(B))², where A ♯ B is the geometric mean and K(h) = (h+1)²/(4h) with h = M/m.

Projectively invariant Hilbert-Schmidt kernels and convolution type operators

Jaeseong Heo (2012)

Studia Mathematica

Similarity:

We consider positive definite kernels which are invariant under a multiplier and an action of a semigroup with involution, and construct the associated projective isometric representation on a Hilbert C*-module. We introduce the notion of C*-valued Hilbert-Schmidt kernels associated with two sequences and construct the corresponding reproducing Hilbert C*-module. We also discuss projective invariance of Hilbert-Schmidt kernels. We prove that the range of a convolution type operator associated...

On ideals in Hilbert algebras

Wiesław Aleksander Dudek (1999)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

On the negative dependence in Hilbert spaces with applications

Nguyen Thi Thanh Hien, Le Van Thanh, Vo Thi Hong Van (2019)

Applications of Mathematics

Similarity:

This paper introduces the notion of pairwise and coordinatewise negative dependence for random vectors in Hilbert spaces. Besides giving some classical inequalities, almost sure convergence and complete convergence theorems are established. Some limit theorems are extended to pairwise and coordinatewise negatively dependent random vectors taking values in Hilbert spaces. An illustrative example is also provided.

Some embedding properties of Hilbert subspaces in topological vector spaces

Eberhard Gerlach (1971)

Annales de l'institut Fourier

Similarity:

A general theorem on Hilbert subspaces of dually nuclear spaces is proved, from which all previous results of K. Maurin and the writer on regularity of generalized eigenfunctions follow as simple corollaries. In addition some supplements to L. Schwartz’s work on Hilbert subspaces in spaces of smooth functions are given.