Displaying similar documents to “The weak Phillips property”

An extension property for Banach spaces

Walden Freedman (2002)

Colloquium Mathematicae

Similarity:

A Banach space X has property (E) if every operator from X into c₀ extends to an operator from X** into c₀; X has property (L) if whenever K ⊆ X is limited in X**, then K is limited in X; X has property (G) if whenever K ⊆ X is Grothendieck in X**, then K is Grothendieck in X. In all of these, we consider X as canonically embedded in X**. We study these properties in connection with other geometric properties, such as the Phillips properties, the Gelfand-Phillips and weak Gelfand-Phillips...

An interplay between the weak form of Peano's theorem and structural aspects of Banach spaces

C. S. Barroso, M. A. M. Marrocos, M. P. Rebouças (2013)

Studia Mathematica

Similarity:

We establish some results that concern the Cauchy-Peano problem in Banach spaces. We first prove that a Banach space contains a nontrivial separable quotient iff its dual admits a weak*-transfinite Schauder frame. We then use this to recover some previous results on quotient spaces. In particular, by applying a recent result of Hájek-Johanis, we find a new perspective for proving the failure of the weak form of Peano's theorem in general Banach spaces. Next, we study a kind of algebraic...