Displaying similar documents to “Weak mixing of a transformation similar to Pascal”

Tower multiplexing and slow weak mixing

Terrence Adams (2015)

Colloquium Mathematicae

Similarity:

A technique is presented for multiplexing two ergodic measure preserving transformations together to derive a third limiting transformation. This technique is used to settle a question regarding rigidity sequences of weak mixing transformations. Namely, given any rigidity sequence for an ergodic measure preserving transformation, there exists a weak mixing transformation which is rigid along the same sequence. This establishes a wide range of rigidity sequences for weakly mixing dynamical...

Ergodic seminorms for commuting transformations and applications

Bernard Host (2009)

Studia Mathematica

Similarity:

Recently, T. Tao gave a finitary proof of a convergence theorem for multiple averages with several commuting transformations, and soon thereafter T. Austin gave an ergodic proof of the same result. Although we give here another proof of the same theorem, this is not the main goal of this paper. Our main concern is to provide tools for the case of several commuting transformations, similar to the tools successfully used in the case of a single transformation, with the idea that they may...

Weakly mixing transformations and the Carathéodory definition of measurable sets

Amos Koeller, Rodney Nillsen, Graham Williams (2007)

Colloquium Mathematicae

Similarity:

Let 𝕋 denote the set of complex numbers of modulus 1. Let v ∈ 𝕋, v not a root of unity, and let T: 𝕋 → 𝕋 be the transformation on 𝕋 given by T(z) = vz. It is known that the problem of calculating the outer measure of a T-invariant set leads to a condition which formally has a close resemblance to Carathéodory's definition of a measurable set. In ergodic theory terms, T is not weakly mixing. Now there is an example, due to Kakutani, of a transformation ψ̃ which is weakly mixing but...

Mixing on rank-one transformations

Darren Creutz, Cesar E. Silva (2010)

Studia Mathematica

Similarity:

We prove that mixing on rank-one transformations is equivalent to "the uniform convergence of ergodic averages (as in the mean ergodic theorem) over subsequences of partial sums". In particular, all polynomial staircase transformations are mixing.

On new spectral multiplicities for ergodic maps

Alexandre I. Danilenko (2010)

Studia Mathematica

Similarity:

It is shown that each subset of positive integers that contains 2 is realizable as the set of essential values of the multiplicity function for the Koopman operator of some weakly mixing transformation.

Some thoughts about Segal's ergodic theorem

Daniel W. Stroock (2010)

Colloquium Mathematicae

Similarity:

Over fifty years ago, Irving Segal proved a theorem which leads to a characterization of those orthogonal transformations on a Hilbert space which induce ergodic transformations. Because Segal did not present his result in a way which made it readily accessible to specialists in ergodic theory, it was difficult for them to appreciate what he had done. The purpose of this note is to state and prove Segal's result in a way which, I hope, will win it the recognition which it deserves. ...

Ergodic properties of a class of discrete Abelian group extensions of rank-one transformations

Chris Dodd, Phakawa Jeasakul, Anne Jirapattanakul, Daniel M. Kane, Becky Robinson, Noah D. Stein, Cesar E. Silva (2010)

Colloquium Mathematicae

Similarity:

We define a class of discrete Abelian group extensions of rank-one transformations and establish necessary and sufficient conditions for these extensions to be power weakly mixing. We show that all members of this class are multiply recurrent. We then study conditions sufficient for showing that Cartesian products of transformations are conservative for a class of invertible infinite measure-preserving transformations and provide examples of these transformations.

On weakly mixing and doubly ergodic nonsingular actions

Sarah Iams, Brian Katz, Cesar E. Silva, Brian Street, Kirsten Wickelgren (2005)

Colloquium Mathematicae

Similarity:

We study weak mixing and double ergodicity for nonsingular actions of locally compact Polish abelian groups. We show that if T is a nonsingular action of G, then T is weakly mixing if and only if for all cocompact subgroups A of G the action of T restricted to A is weakly mixing. We show that a doubly ergodic nonsingular action is weakly mixing and construct an infinite measure-preserving flow that is weakly mixing but not doubly ergodic. We also construct an infinite measure-preserving...

Conjugacies between ergodic transformations and their inverses

Geoffrey Goodson (2000)

Colloquium Mathematicae

Similarity:

We study certain symmetries that arise when automorphisms S and T defined on a Lebesgue probability space (X, ℱ, μ) satisfy the equation S T = T - 1 S . In an earlier paper [6] it was shown that this puts certain constraints on the spectrum of T. Here we show that it also forces constraints on the spectrum of S 2 . In particular, S 2 has to have a multiplicity function which only takes even values on the orthogonal complement of the subspace f L 2 ( X , , μ ) : f ( T 2 x ) = f ( x ) . For S and T ergodic satisfying this equation further constraints...

Topological groups with Rokhlin properties

Eli Glasner, Benjamin Weiss (2008)

Colloquium Mathematicae

Similarity:

In his classical paper [Ann. of Math. 45 (1944)] P. R. Halmos shows that weak mixing is generic in the measure preserving transformations. Later, in his book, Lectures on Ergodic Theory, he gave a more streamlined proof of this fact based on a fundamental lemma due to V. A. Rokhlin. For this reason the name of Rokhlin has been attached to a variety of results, old and new, relating to the density of conjugacy classes in topological groups. In this paper we will survey some of the new...