Displaying similar documents to “On existence of double coset varieties”

Endomorphisms of symbolic algebraic varieties

Misha Gromov (1999)

Journal of the European Mathematical Society

Similarity:

The theorem of Ax says that any regular selfmapping of a complex algebraic variety is either surjective or non-injective; this property is called surjunctivity and investigated in the present paper in the category of proregular mappings of proalgebraic spaces. We show that such maps are surjunctive if they commute with sufficiently large automorphism groups. Of particular interest is the case of proalgebraic varieties over infinite graphs. The paper intends to bring out relations between...

Weakly proper toric quotients

Annette A'Campo-Neuen (2005)

Colloquium Mathematicae

Similarity:

We consider subtorus actions on complex toric varieties. A natural candidate for a categorical quotient of such an action is the so-called toric quotient, a universal object constructed in the toric category. We prove that if the toric quotient is weakly proper and if in addition the quotient variety is of expected dimension then the toric quotient is a categorical quotient in the category of algebraic varieties. For example, weak properness always holds for the toric quotient of a subtorus...

Characterization of global Phragmén-Lindelöf conditions for algebraic varieties by limit varieties only

Rüdiger W. Braun, Reinhold Meise, B. A. Taylor (2006)

Annales Polonici Mathematici

Similarity:

For algebraic surfaces, several global Phragmén-Lindelöf conditions are characterized in terms of conditions on their limit varieties. This shows that the hyperbolicity conditions that appeared in earlier geometric characterizations are redundant. The result is applied to the problem of existence of a continuous linear right inverse for constant coefficient partial differential operators in three variables in Beurling classes of ultradifferentiable functions.

The dimension of a variety

Ewa Graczyńska, Dietmar Schweigert (2007)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Derived varieties were invented by P. Cohn in [4]. Derived varieties of a given type were invented by the authors in [10]. In the paper we deal with the derived variety V σ of a given variety, by a fixed hypersubstitution σ. We introduce the notion of the dimension of a variety as the cardinality κ of the set of all proper derived varieties of V included in V. We examine dimensions of some varieties in the lattice of all varieties of a given type τ. Dimensions of varieties of lattices...

Generalized polar varieties and an efficient real elimination

Bernd Bank, Marc Giusti, Joos Heintz, Luis M. Pardo (2004)

Kybernetika

Similarity:

Let W be a closed algebraic subvariety of the n -dimensional projective space over the complex or real numbers and suppose that W is non-empty and equidimensional. In this paper we generalize the classic notion of polar variety of W associated with a given linear subvariety of the ambient space of W . As particular instances of this new notion of generalized polar variety we reobtain the classic ones and two new types of polar varieties, called dual and (in case that W is affine) conic....

Pre-Tango structures and uniruled varieties

Yoshifumi Takeda (2007)

Colloquium Mathematicae

Similarity:

The pre-Tango structure is an ample invertible sheaf of locally exact differentials on a variety of positive characteristic. It is well known that pre-Tango structures on curves often induce pathological uniruled surfaces. We show that almost all pre-Tango structures on varieties induce higher-dimensional pathological uniruled varieties, and that each of these uniruled varieties also has a pre-Tango structure. For this purpose, we first consider the p-closed rational vector field...