On the characterization of Jonsson-Tarski and of subtractive varieties

Marino Gran; Diana Rodelo

Diagrammes (2012)

  • Volume: 67-68, page 101-115
  • ISSN: 0224-3911

How to cite

top

Gran, Marino, and Rodelo, Diana. "On the characterization of Jonsson-Tarski and of subtractive varieties." Diagrammes 67-68 (2012): 101-115. <http://eudml.org/doc/272970>.

@article{Gran2012,
author = {Gran, Marino, Rodelo, Diana},
journal = {Diagrammes},
keywords = {abelian categories; exact categories; algebraic theories; projective covers; varieties of universal algebras; regular categories; subtractive varieties; Jónsson-Tarski varieties},
language = {eng},
pages = {101-115},
publisher = {Université Paris 7, Unité d'enseignement et de recherche de mathématiques},
title = {On the characterization of Jonsson-Tarski and of subtractive varieties},
url = {http://eudml.org/doc/272970},
volume = {67-68},
year = {2012},
}

TY - JOUR
AU - Gran, Marino
AU - Rodelo, Diana
TI - On the characterization of Jonsson-Tarski and of subtractive varieties
JO - Diagrammes
PY - 2012
PB - Université Paris 7, Unité d'enseignement et de recherche de mathématiques
VL - 67-68
SP - 101
EP - 115
LA - eng
KW - abelian categories; exact categories; algebraic theories; projective covers; varieties of universal algebras; regular categories; subtractive varieties; Jónsson-Tarski varieties
UR - http://eudml.org/doc/272970
ER -

References

top
  1. [1] J. Adamek and H. Porst, Algebraic theories of quasivarieties, J. Algebra, 208 (1998) 379-398. Zbl0913.18004
  2. [2] M. Adelman, Abelian categories over additive ones, J. Pure Appl. Algebra3 (1973) 103-117. Zbl0287.18009
  3. [3] M. Barr, Exact Categories, in: Lecture Notes in Math. 236, Springer (1971) 1-120. 
  4. [4] F. Borceux and D. Bourn, Mal'cev, protomodular, homological and semi-abelian categories, Kluwer, 2004. 
  5. [5] D. Bourn, Mal'cev categories and fibration of pointed objects, Appl. Categ. Structures4 (1996) 307-327. Zbl0856.18004
  6. [6] A. Carboni, J. Lambek, and M.C. Pedicchio, Diagram chasing in Malcev categories, J. Pure Appl. Algebra69 (1991) 271-284. Zbl0722.18005
  7. [7] A. Carboni and R. Celia Magno, The free exact category on a left exact one, . Austr. Math. Soc. Ser., A 33 (1982) 295-301. Zbl0504.18005
  8. [8] A. Carboni and M.C. Pedicchio, A new proof of the Mal'cev theorem, Rend. Circolo Mat. Palermo, S. II, Suppl. 64 (2000) 13-16. Zbl0966.18005
  9. [9] A. Carboni and G. Rosolini, Locally cartesian closed exact completions, J. Pure Appl. Algebra154 (2000) 103-116. Zbl0962.18001
  10. [10] A. Carboni and E. Vitale, Regular and exact completions, J. Pure Appl. Algebra125 (1998) 79-116. Zbl0891.18002
  11. [11] M. Gran, Semi-abelian exact completions, Homology, Hom. Appl.4 (2002) 175-189. 
  12. [12] M. Gran and E.M. Vitale, On the exact completion of the homotopy category, Cah. Top. Geom. Diff. CategoriquesXXXIX-4 (1998) 287-297. Zbl0918.18003
  13. [13] P. Freyd, Representations in abelian categories, in: Proc. Conference on Categorical Algebra, La Jolla, 1965 (Springer, Berlin, 1966). Zbl0202.32402
  14. [14] Z. Janelidze, Subtractive categories, Appl. Categ. Structures13 (2005) 343-350. 
  15. [15] B. Jonsson and A. Tarski, Direct Decompositions of Finite Algebraic Systems, Notre Dame Mathematical Lectures, Notre Dame, Indiana (1947) Zbl0041.34501
  16. [16] F. W. Lawvere, Functorial Semantics of Algebraic Theories, Ph.D. thesis, Columbia University (1963), Reprint in Theory and Applications of Categories5 (2004) 1-121. Zbl0119.25901
  17. [17] M. Menni, A characterization of the left exact categories whose exact completions are toposes, J. Pure Appl. Algebra177 (2003) 287-301. Zbl1050.18002
  18. [18] J. Rosicky, Cartesian closed exact completions, J. Pure Appl. Algebra142 (1999) 261-270. Zbl0937.18003
  19. [19] J. Rosicky and E.M. Vitale, Exact completions and representations in abelian categories, Homology, Hom. Appl.3 (2001) 453-466. Zbl0993.18001
  20. [20] A. Ursini, On subtractive varieties, I. Algebra Universalis31 (1994) 204-222. Zbl0799.08010
  21. [21] E. Vitale, Left covering functors, PhD thesis, Université catholique de Louvain (1994) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.