Some properties of subsets of R^k with the Baire property
Hejduk, Jacek (2015-11-10T11:42:31Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Hejduk, Jacek (2015-11-10T11:42:31Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
J. Mioduszewski (1971)
Colloquium Mathematicae
Similarity:
P. Dierolf, S. Dierolf, L. Drewnowski (1978)
Colloquium Mathematicae
Similarity:
E. Torrance (1938)
Fundamenta Mathematicae
Similarity:
R. C. Haworth, R. A McCoy
Similarity:
CONTENTSIntroduction............................................................................................................ 5I. Basic properties of Baire spaces................................................................... 61. Nowhere dense sets............................................................................................... 62. First and second category sets............................................................................. 83. Baire spaces................................................................................................................
Ryszard Frankiewicz, Kenneth Kunen (1987)
Fundamenta Mathematicae
Similarity:
Miller, Harry I. (1981)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Kazimierz Kuratowski (1979)
Colloquium Mathematicum
Similarity:
Jerzy Kąkol (1986)
Mathematica Slovaca
Similarity:
Jerzy Kakol (2000)
Revista Matemática Complutense
Similarity:
We characterize Baire-like spaces C(X,E) of continuous functions defined on a locally compact and Hewitt space X into a locally convex space E endowed with the compact-open topology.
W. Fleissner, K. Kunen (1978)
Fundamenta Mathematicae
Similarity:
Zbigniew Grande (2009)
Colloquium Mathematicae
Similarity:
Let I ⊂ ℝ be an open interval and let A ⊂ I be any set. Every Baire 1 function f: I → ℝ coincides on A with a function g: I → ℝ which is simultaneously approximately continuous and quasicontinuous if and only if the set A is nowhere dense and of Lebesgue measure zero.