On affine subspaces that illuminate a convex set.
Bezdek, Károly (1994)
Beiträge zur Algebra und Geometrie
Similarity:
Bezdek, Károly (1994)
Beiträge zur Algebra und Geometrie
Similarity:
Zygfryd Kominek, T. Zgraja (1999)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Varga, Adrienn (2008)
Banach Journal of Mathematical Analysis [electronic only]
Similarity:
Józef Joachim Telega (1977)
Annales Polonici Mathematici
Similarity:
Krassowska, Dorota (2009)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Similarity:
F. Milán, A. Martínez (1992)
Manuscripta mathematica
Similarity:
Janko Marovt (2006)
Studia Mathematica
Similarity:
Let 𝒳 be a compact Hausdorff space which satisfies the first axiom of countability, I = [0,1] and 𝓒(𝒳,I) the set of all continuous functions from 𝒳 to I. If φ: 𝓒(𝒳,I) → 𝓒(𝒳,I) is a bijective affine map then there exists a homeomorphism μ: 𝒳 → 𝒳 such that for every component C in 𝒳 we have either φ(f)(x) = f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C, or φ(f)(x) = 1-f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C.
Leichtweiss, Kurt (1999)
Beiträge zur Algebra und Geometrie
Similarity:
Paweł Urbański (2003)
Banach Center Publications
Similarity:
An affine Cartan calculus is developed. The concepts of special affine bundles and special affine duality are introduced. The canonical isomorphisms, fundamental for Lagrangian and Hamiltonian formulations of the dynamics in the affine setting are proved.
Takashi Sano (1999)
Banach Center Publications
Similarity:
We study affine invariants of plane curves from the view point of the singularity theory of smooth functions. We describe how affine vertices and affine inflexions are created and destroyed.
Andrew Lorent (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
Similarity:
In this note we give sharp lower bounds for a non-convex functional when minimised over the space of functions that are piecewise affine on a triangular grid and satisfy an affine boundary condition in the second lamination convex hull of the wells of the functional.