Displaying similar documents to “Approximating real linear operators”

The Re-nonnegative definite solutions to the matrix equation A X B = C

Qing Wen Wang, Chang Lan Yang (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

An n × n complex matrix A is called Re-nonnegative definite (Re-nnd) if the real part of x * A x is nonnegative for every complex n -vector x . In this paper criteria for a partitioned matrix to be Re-nnd are given. A necessary and sufficient condition for the existence of and an expression for the Re-nnd solutions of the matrix equation A X B = C are presented.

Nonsingularity, positive definiteness, and positive invertibility under fixed-point data rounding

Jiří Rohn (2007)

Applications of Mathematics

Similarity:

For a real square matrix A and an integer d 0 , let A ( d ) denote the matrix formed from A by rounding off all its coefficients to d decimal places. The main problem handled in this paper is the following: assuming that A ( d ) has some property, under what additional condition(s) can we be sure that the original matrix A possesses the same property? Three properties are investigated: nonsingularity, positive definiteness, and positive invertibility. In all three cases it is shown that there exists...

On an extension of Fekete’s lemma

Inheung Chon (1999)

Czechoslovak Mathematical Journal

Similarity:

We show that if a real n × n non-singular matrix ( n m ) has all its minors of order m - 1 non-negative and has all its minors of order m which come from consecutive rows non-negative, then all m th order minors are non-negative, which may be considered an extension of Fekete’s lemma.

Young's (in)equality for compact operators

Gabriel Larotonda (2016)

Studia Mathematica

Similarity:

If a,b are n × n matrices, T. Ando proved that Young’s inequality is valid for their singular values: if p > 1 and 1/p + 1/q = 1, then λ k ( | a b * | ) λ k ( 1 / p | a | p + 1 / q | b | q ) for all k. Later, this result was extended to the singular values of a pair of compact operators acting on a Hilbert space by J. Erlijman, D. R. Farenick and R. Zeng. In this paper we prove that if a,b are compact operators, then equality holds in Young’s inequality if and only if | a | p = | b | q .

On the matrix negative Pell equation

Aleksander Grytczuk, Izabela Kurzydło (2009)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) i = 1 n X i - d i = 1 n Y ² i = - I with d ∈ N for nonsingular X i , Y i M ( Z ) , i=1,...,n.

Disjoint strict singularity of inclusions between rearrangement invariant spaces

Francisco L. Hernández, Víctor M. Sánchez, Evgueni M. Semenov (2001)

Studia Mathematica

Similarity:

It is studied when inclusions between rearrangement invariant function spaces on the interval [0,∞) are disjointly strictly singular operators. In particular suitable criteria, in terms of the fundamental function, for the inclusions L ¹ L E and E L ¹ + L to be disjointly strictly singular are shown. Applications to the classes of Lorentz and Marcinkiewicz spaces are given.

Finite-rank perturbations of positive operators and isometries

Man-Duen Choi, Pei Yuan Wu (2006)

Studia Mathematica

Similarity:

We completely characterize the ranks of A - B and A 1 / 2 - B 1 / 2 for operators A and B on a Hilbert space satisfying A ≥ B ≥ 0. Namely, let l and m be nonnegative integers or infinity. Then l = rank(A - B) and m = r a n k ( A 1 / 2 - B 1 / 2 ) for some operators A and B with A ≥ B ≥ 0 on a Hilbert space of dimension n (1 ≤ n ≤ ∞) if and only if l = m = 0 or 0 < l ≤ m ≤ n. In particular, this answers in the negative the question posed by C. Benhida whether for positive operators A and B the finiteness of rank(A - B) implies that...