On the matrix negative Pell equation

Aleksander Grytczuk; Izabela Kurzydło

Discussiones Mathematicae - General Algebra and Applications (2009)

  • Volume: 29, Issue: 1, page 35-45
  • ISSN: 1509-9415

Abstract

top
Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) i = 1 n X i - d i = 1 n Y ² i = - I with d ∈ N for nonsingular X i , Y i M ( Z ) , i=1,...,n.

How to cite

top

Aleksander Grytczuk, and Izabela Kurzydło. "On the matrix negative Pell equation." Discussiones Mathematicae - General Algebra and Applications 29.1 (2009): 35-45. <http://eudml.org/doc/276938>.

@article{AleksanderGrytczuk2009,
abstract = {Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) $∑_\{i=1\}^\{n\} X₂_\{i\} - d ∑_\{i=1\}^\{n\} Y²_\{i\} = -I$ with d ∈ N for nonsingular $X_\{i\},Y_\{i\} ∈ M₂(Z)$, i=1,...,n.},
author = {Aleksander Grytczuk, Izabela Kurzydło},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {the matrix negative Pell equation; powers matrices; matrix negative Pell equation; solvability conditions},
language = {eng},
number = {1},
pages = {35-45},
title = {On the matrix negative Pell equation},
url = {http://eudml.org/doc/276938},
volume = {29},
year = {2009},
}

TY - JOUR
AU - Aleksander Grytczuk
AU - Izabela Kurzydło
TI - On the matrix negative Pell equation
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2009
VL - 29
IS - 1
SP - 35
EP - 45
AB - Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) $∑_{i=1}^{n} X₂_{i} - d ∑_{i=1}^{n} Y²_{i} = -I$ with d ∈ N for nonsingular $X_{i},Y_{i} ∈ M₂(Z)$, i=1,...,n.
LA - eng
KW - the matrix negative Pell equation; powers matrices; matrix negative Pell equation; solvability conditions
UR - http://eudml.org/doc/276938
ER -

References

top
  1. [1] Z. Cao and A. Grytczuk, Fermat's type equations in the set of 2x2 integral matrices, Tsukuba J. Math. 22 (1998), 637-643. Zbl0940.11016
  2. [2] R.Z. Domiaty, Solutions of x⁴+y⁴=z⁴ in 2x2 integral matrices, Amer. Math. Monthly (1966) 73, 631. 
  3. [3] A. Grytczuk, Fermat's equation in the set of matrices and special functions, Studia Univ. Babes-Bolyai, Mathematica 4 (1997), 49-55 . 
  4. [4] A. Grytczuk, On a conjecture about the equation A m x + A m y = A m z , Acta Acad. Paed. Agriensis, Sectio Math. 25 (1998), 61-70. Zbl0923.11043
  5. [5] A. Grytczuk and J. Grytczuk, Ljunggren’s trinomials and matrix equation A x + A y = A z , Tsukuba J. Math. 2 (2002), 229-235. Zbl1020.11019
  6. [6] A. Grytczuk and K. Grytczuk, Functional recurences, 115-121 in: Applications of Fibonacci Numbers, Ed. E. Bergum et als, by Kluwer Academic Publishers 1990. Zbl0725.34002
  7. [7] A. Grytczuk, F. Luca and M. Wójtowicz, The negative Pell equation and Pythagorean triples, Proc. Japan Acad. 76 (2000), 91-94. Zbl0971.11013
  8. [8] A. Khazanov, Fermat's equation in matrices, Serdica Math. J. 21 (1995), 19-40. 
  9. [9] I. Kurzydło, Explicit form on a GLW criterion for solvability of the negative Pell equation - Submitted. 
  10. [10] M. Le and C. Li, On Fermat's equation in integral 2x2 matrices, Period. Math. Hung. 31 (1995), 219-222. Zbl0849.11035
  11. [11] Z. Patay and A. Szakacs, On Fermat's problem in matrix rings and groups, Publ. Math. Debrecen 61 (3-4) (2002), 487-494. Zbl1006.11012
  12. [12] H. Qin, Fermat’s problem and Goldbach problem over M n ( Z ) , Linear Algebra App., 236 (1996), 131-135. 
  13. [13] P. Ribenboim, 13 Lectures on Fermat's Last Theorem (New York: Springer-Verlag) 1979. Zbl0456.10006
  14. [14] N. Vaserstein, Non-commutative Number Theory, Contemp. Math. 83 (1989), 445-449. 

NotesEmbed ?

top

You must be logged in to post comments.