On the matrix negative Pell equation

Aleksander Grytczuk; Izabela Kurzydło

Discussiones Mathematicae - General Algebra and Applications (2009)

  • Volume: 29, Issue: 1, page 35-45
  • ISSN: 1509-9415

Abstract

top
Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) i = 1 n X i - d i = 1 n Y ² i = - I with d ∈ N for nonsingular X i , Y i M ( Z ) , i=1,...,n.

How to cite

top

Aleksander Grytczuk, and Izabela Kurzydło. "On the matrix negative Pell equation." Discussiones Mathematicae - General Algebra and Applications 29.1 (2009): 35-45. <http://eudml.org/doc/276938>.

@article{AleksanderGrytczuk2009,
abstract = {Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) $∑_\{i=1\}^\{n\} X₂_\{i\} - d ∑_\{i=1\}^\{n\} Y²_\{i\} = -I$ with d ∈ N for nonsingular $X_\{i\},Y_\{i\} ∈ M₂(Z)$, i=1,...,n.},
author = {Aleksander Grytczuk, Izabela Kurzydło},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {the matrix negative Pell equation; powers matrices; matrix negative Pell equation; solvability conditions},
language = {eng},
number = {1},
pages = {35-45},
title = {On the matrix negative Pell equation},
url = {http://eudml.org/doc/276938},
volume = {29},
year = {2009},
}

TY - JOUR
AU - Aleksander Grytczuk
AU - Izabela Kurzydło
TI - On the matrix negative Pell equation
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2009
VL - 29
IS - 1
SP - 35
EP - 45
AB - Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) $∑_{i=1}^{n} X₂_{i} - d ∑_{i=1}^{n} Y²_{i} = -I$ with d ∈ N for nonsingular $X_{i},Y_{i} ∈ M₂(Z)$, i=1,...,n.
LA - eng
KW - the matrix negative Pell equation; powers matrices; matrix negative Pell equation; solvability conditions
UR - http://eudml.org/doc/276938
ER -

References

top
  1. [1] Z. Cao and A. Grytczuk, Fermat's type equations in the set of 2x2 integral matrices, Tsukuba J. Math. 22 (1998), 637-643. Zbl0940.11016
  2. [2] R.Z. Domiaty, Solutions of x⁴+y⁴=z⁴ in 2x2 integral matrices, Amer. Math. Monthly (1966) 73, 631. 
  3. [3] A. Grytczuk, Fermat's equation in the set of matrices and special functions, Studia Univ. Babes-Bolyai, Mathematica 4 (1997), 49-55 . 
  4. [4] A. Grytczuk, On a conjecture about the equation A m x + A m y = A m z , Acta Acad. Paed. Agriensis, Sectio Math. 25 (1998), 61-70. Zbl0923.11043
  5. [5] A. Grytczuk and J. Grytczuk, Ljunggren’s trinomials and matrix equation A x + A y = A z , Tsukuba J. Math. 2 (2002), 229-235. Zbl1020.11019
  6. [6] A. Grytczuk and K. Grytczuk, Functional recurences, 115-121 in: Applications of Fibonacci Numbers, Ed. E. Bergum et als, by Kluwer Academic Publishers 1990. Zbl0725.34002
  7. [7] A. Grytczuk, F. Luca and M. Wójtowicz, The negative Pell equation and Pythagorean triples, Proc. Japan Acad. 76 (2000), 91-94. Zbl0971.11013
  8. [8] A. Khazanov, Fermat's equation in matrices, Serdica Math. J. 21 (1995), 19-40. 
  9. [9] I. Kurzydło, Explicit form on a GLW criterion for solvability of the negative Pell equation - Submitted. 
  10. [10] M. Le and C. Li, On Fermat's equation in integral 2x2 matrices, Period. Math. Hung. 31 (1995), 219-222. Zbl0849.11035
  11. [11] Z. Patay and A. Szakacs, On Fermat's problem in matrix rings and groups, Publ. Math. Debrecen 61 (3-4) (2002), 487-494. Zbl1006.11012
  12. [12] H. Qin, Fermat’s problem and Goldbach problem over M n ( Z ) , Linear Algebra App., 236 (1996), 131-135. 
  13. [13] P. Ribenboim, 13 Lectures on Fermat's Last Theorem (New York: Springer-Verlag) 1979. Zbl0456.10006
  14. [14] N. Vaserstein, Non-commutative Number Theory, Contemp. Math. 83 (1989), 445-449. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.