Banach spaces of compact operators
Charles E. Cleaver (1972)
Colloquium Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Charles E. Cleaver (1972)
Colloquium Mathematicae
Similarity:
Iryna Banakh, Taras Banakh (2010)
Studia Mathematica
Similarity:
We prove that for each dense non-compact linear operator S: X → Y between Banach spaces there is a linear operator T: Y → c₀ such that the operator TS: X → c₀ is not compact. This generalizes the Josefson-Nissenzweig Theorem.
Akkouchi, Mohamed (2016-05-20T09:55:13Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Hatamleh, Raed (2007)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: Primary 47A48, 93B28, 47A65; Secondary 34C94. New concepts of linear colligations and dynamic systems, corresponding to the linear operators, acting in the Banach spaces, are introduced. The main properties of the transfer function and its relation to the dual transfer function are established.
Enrique A. Sánchez Pérez (2015)
Czechoslovak Mathematical Journal
Similarity:
In this paper we analyse a definition of a product of Banach spaces that is naturally associated by duality with a space of operators that can be considered as a generalization of the notion of space of multiplication operators. This dual relation allows to understand several constructions coming from different fields of functional analysis that can be seen as instances of the abstract one when a particular product is considered. Some relevant examples and applications are shown, regarding...
Alfonso Montes-Rodríguez, M. Carmen Romero-Moreno (2002)
Studia Mathematica
Similarity:
We prove a Supercyclicity Criterion for a continuous linear mapping that is defined on the operator algebra of a separable Banach space ℬ. Our result extends a recent result on hypercyclicity on the operator algebra of a Hilbert space. This kind of result is a powerful tool to analyze the structure of supercyclic vectors of a supercyclic operator that is defined on ℬ. For instance, as a consequence of the main result, we give a very simple proof of the recently established fact that...
Athanassios Kartsatos (1995)
Studia Mathematica
Similarity:
Let X be a real Banach space and G ⊂ X open and bounded. Assume that one of the following conditions is satisfied: (i) X* is uniformly convex and T:Ḡ→ X is demicontinuous and accretive; (ii) T:Ḡ→ X is continuous and accretive; (iii) T:X ⊃ D(T)→ X is m-accretive and Ḡ ⊂ D(T). Assume, further, that M ⊂ X is pathwise connected and such that M ∩ TG ≠ ∅ and . Then . If, moreover, Case (i) or (ii) holds and T is of type , or Case (iii) holds and T is of type , then M ⊂ TG. Various results...
Vladimír Lovicar (1975)
Časopis pro pěstování matematiky
Similarity:
Jesús Ángel Jaramillo, Ángeles Prieto, Ignacio Zalduendo (2009)
Studia Mathematica
Similarity:
This paper is devoted to several questions concerning linearizations of function spaces. We first consider the relation between linearizations of a given space when it is viewed as a function space over different domains. Then we study the problem of characterizing when a Banach function space admits a Banach linearization in a natural way. Finally, we consider the relevance of compactness properties in linearizations, more precisely, the relation between different compactness properties...
M. Mathieu, G. J. Schick (2002)
Studia Mathematica
Similarity:
A linear mapping T from a subspace E of a Banach algebra into another Banach algebra is defined to be spectrally bounded if there is a constant M ≥ 0 such that r(Tx) ≤ Mr(x) for all x ∈ E, where r(·) denotes the spectral radius. We study some basic properties of this class of operators, which are sometimes analogous to, sometimes very different from, those of bounded operators between Banach spaces.
Bertram Yood (2008)
Studia Mathematica
Similarity:
The set of commutators in a Banach *-algebra A, with continuous involution, is examined. Applications are made to the case where A = B(ℓ₂), the algebra of all bounded linear operators on ℓ₂.
Vladimir M. Kadets, Roman V. Shvidkoy, Dirk Werner (2001)
Studia Mathematica
Similarity:
Let X be a Banach space. We introduce a formal approach which seems to be useful in the study of those properties of operators on X which depend only on the norms of the images of elements. This approach is applied to the Daugavet equation for norms of operators; in particular we develop a general theory of narrow operators and rich subspaces of spaces X with the Daugavet property previously studied in the context of the classical spaces C(K) and L₁(μ).
Andreas Defant, Mieczysław Mastyło (2003)
Studia Mathematica
Similarity:
The Banach operator ideal of (q,2)-summing operators plays a fundamental role within the theory of s-number and eigenvalue distribution of Riesz operators in Banach spaces. A key result in this context is a composition formula for such operators due to H. König, J. R. Retherford and N. Tomczak-Jaegermann. Based on abstract interpolation theory, we prove a variant of this result for (E,2)-summing operators, E a symmetric Banach sequence space.