Displaying similar documents to “Multidimensional weak resolvents and spatial equivalence of normal operators”

Ascent and descent for sets of operators

Derek Kitson (2009)

Studia Mathematica

Similarity:

We extend the notion of ascent and descent for an operator acting on a vector space to sets of operators. If the ascent and descent of a set are both finite then they must be equal and give rise to a canonical decomposition of the space. Algebras of operators, unions of sets and closures of sets are treated. As an application we construct a Browder joint spectrum for commuting tuples of bounded operators which is compact-valued and has the projection property.

Diagonals of Self-adjoint Operators with Finite Spectrum

Marcin Bownik, John Jasper (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Given a finite set X⊆ ℝ we characterize the diagonals of self-adjoint operators with spectrum X. Our result extends the Schur-Horn theorem from a finite-dimensional setting to an infinite-dimensional Hilbert space analogous to Kadison's theorem for orthogonal projections (2002) and the second author's result for operators with three-point spectrum (2013).

Some results on the weak dominance relation between ordered weighted averaging operators and T-norms

Gang Li, Zhenbo Li, Jing Wang (2024)

Kybernetika

Similarity:

Aggregation operators have the important application in any fields where the fusion of information is processed. The dominance relation between two aggregation operators is linked to the fusion of fuzzy relations, indistinguishability operators and so on. In this paper, we deal with the weak dominance relation between two aggregation operators which is closely related with the dominance relation. Weak domination of isomorphic aggregation operators and ordinal sum of conjunctors is presented....