Displaying similar documents to “A semigroup analogue of the Fonf-Lin-Wojtaszczyk ergodic characterization of reflexive Banach spaces with a basis”

Ergodic theorems and perturbations of contraction semigroups

Marta Tyran-Kamińska (2009)

Studia Mathematica

Similarity:

We provide sufficient conditions for sums of two unbounded operators on a Banach space to be (pre-)generators of contraction semigroups. Necessary conditions and applications to positive emigroups on Banach lattices are also presented.

Operators with an ergodic power

Teresa Bermúdez, Manuel González, Mostafa Mbekhta (2000)

Studia Mathematica

Similarity:

We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.

Hopf's ratio ergodic theorem by inducing

Roland Zweimüller (2004)

Colloquium Mathematicae

Similarity:

We present a very quick and easy proof of the classical Stepanov-Hopf ratio ergodic theorem, deriving it from Birkhoff's ergodic theorem by a simple inducing argument.

Uniformly ergodic A-contractions on Hilbert spaces

Laurian Suciu (2009)

Studia Mathematica

Similarity:

We study the concept of uniform (quasi-) A-ergodicity for A-contractions on a Hilbert space, where A is a positive operator. More precisely, we investigate the role of closedness of certain ranges in the uniformly ergodic behavior of A-contractions. We use some known results of M. Lin, M. Mbekhta and J. Zemánek, and S. Grabiner and J. Zemánek, concerning the uniform convergence of the Cesàro means of an operator, to obtain similar versions for A-contractions. Thus, we continue the study...

Pointwise ergodic theorems in Lorentz spaces L(p,q) for null preserving transformations

Ryotaro Sato (1995)

Studia Mathematica

Similarity:

Let (X,ℱ,µ) be a finite measure space and τ a null preserving transformation on (X,ℱ,µ). Functions in Lorentz spaces L(p,q) associated with the measure μ are considered for pointwise ergodic theorems. Necessary and sufficient conditions are given in order that for any f in L(p,q) the ergodic average n - 1 i = 0 n - 1 f τ i ( x ) converges almost everywhere to a function f* in L ( p 1 , q 1 ] , where (pq) and ( p 1 , q 1 ] are assumed to be in the set ( r , s ) : r = s = 1 , o r 1 < r < a n d 1 s , o r r = s = . Results due to C. Ryll-Nardzewski, S. Gładysz, and I. Assani and J. Woś are generalized...