Sequences of 0's and 1's
Grahame Bennett, Johann Boos, Toivo Leiger (2002)
Studia Mathematica
Similarity:
We investigate the extent to which sequence spaces are determined by the sequences of 0's and 1's that they contain.
Grahame Bennett, Johann Boos, Toivo Leiger (2002)
Studia Mathematica
Similarity:
We investigate the extent to which sequence spaces are determined by the sequences of 0's and 1's that they contain.
Christopher E. Stuart (1996)
Collectanea Mathematica
Similarity:
Alfred Rényi (1955)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Klaus-Dieter. Bierstedt, José Bonet (1989)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
We survey our main results on the density condition for Fréchet spaces and on the dual density condition for (DF)-spaces (cf. Bierstedt and Bonet (1988)) as well as some recent developments.
J.C. Ferrando, M. López Pellicer (1998)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Similarity:
In this note we obtainsome strong barrelledness properties concerning the simple function space generated by the hereditary ring Z of a11 subsets of density zero of N.
Baltasar Rodríguez Salinas (1995)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Similarity:
W. Roelke (1971)
Collectanea Mathematica
Similarity:
J.C. Ferrando, M. López-Pellicer (1989)
Disertaciones Matemáticas del Seminario de Matemáticas Fundamentales
Similarity:
Angela Albanese (1997)
Studia Mathematica
Similarity:
It is proved that a separable Fréchet space is quasinormable if, and only if, every quotient space satisfies the density condition of Heinrich. This answers positively a conjecture of Bonet and Dí az in the class of separable Fréchet spaces.
Manuel Valdivia (1972)
Annales de l'institut Fourier
Similarity:
If is the topological product of a non-countable family of barrelled spaces of non-nulle dimension, there exists an infinite number of non-bornological barrelled subspaces of . The same result is obtained replacing “barrelled” by “quasi-barrelled”.