Displaying similar documents to “Podal subspaces on the unit polydisk”

Wold-type extension for N-tuples of commuting contractions

Marek Kosiek, Alfredo Octavio (1999)

Studia Mathematica

Similarity:

Let (T1,…,TN) be an N-tuple of commuting contractions on a separable, complex, infinite-dimensional Hilbert space ℋ. We obtain the existence of a commuting N-tuple (V1,…,VN) of contractions on a superspace K of ℋ such that each V j extends T j , j=1,…,N, and the N-tuple (V1,…,VN) has a decomposition similar to the Wold-von Neumann decomposition for coisometries (although the V j need not be coisometries). As an application, we obtain a new proof of a result of Słociński (see [9])

On the orbit of the centralizer of a matrix

Ching-I Hsin (2002)

Colloquium Mathematicae

Similarity:

Let A be a complex n × n matrix. Let A' be its commutant in Mₙ(ℂ), and C(A) be its centralizer in GL(n,ℂ). Consider the standard C(A)-action on ℂⁿ. We describe the C(A)-orbits via invariant subspaces of A'. For example, we count the number of C(A)-orbits as well as that of invariant subspaces of A'.

Unitary equivalence of operators and dilations

Chafiq Benhida (2004)

Studia Mathematica

Similarity:

Given two contractions T and T' such that T'-T is an operator of finite rank, we prove, under some conditions, the unitary equivalence of the unitary parts of the minimal isometric dilations (respectively minimal co-isometric extensions) of T and T'.