The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On weak sequential convergence in JB*-triple duals”

An approach to Schreier's space.

Jesús M. Fernández Castillo, Manuel González (1991)

Extracta Mathematicae

Similarity:

In 1930, J. Schreier [10] introduced the notion of admissibility in order to show that the now called weak-Banach-Saks property does not hold in every Banach space. A variation of this idea produced the Schreier's space (see [1],[2]). This is the space obtained by completion of the space of finite sequences with respect to the following norm: ||x||S = sup(A admissible)j ∈ A |xj|, ...

Some permanence results of properties of Banach spaces

Giovanni Emmanuele (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Using some known lifting theorems we present three-space property type and permanence results; some of them seem to be new, whereas other are improvements of known facts.

Some properties of weak Banach-Saks operators

Othman Aboutafail, Larbi Zraoula, Noufissa Hafidi (2021)

Mathematica Bohemica

Similarity:

We establish necessary and sufficient conditions under which weak Banach-Saks operators are weakly compact (respectively, L-weakly compact; respectively, M-weakly compact). As consequences, we give some interesting characterizations of order continuous norm (respectively, reflexive Banach lattice).

Remarks on the weak-polynomial convergence on a Banach space.

Jesús A. Jaramillo, Angeles Prieto Yerro (1991)

Extracta Mathematicae

Similarity:

We shall be concerned in this note with some questions posed by Carne, Cole and Gamelin in [3], involving the weak-polynomial convergence and its relation to the tightness of certain algebras of analytic functions on a Banach space.