Some properties of weak Banach-Saks operators

Othman Aboutafail; Larbi Zraoula; Noufissa Hafidi

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 4, page 407-418
  • ISSN: 0862-7959

Abstract

top
We establish necessary and sufficient conditions under which weak Banach-Saks operators are weakly compact (respectively, L-weakly compact; respectively, M-weakly compact). As consequences, we give some interesting characterizations of order continuous norm (respectively, reflexive Banach lattice).

How to cite

top

Aboutafail, Othman, Zraoula, Larbi, and Hafidi, Noufissa. "Some properties of weak Banach-Saks operators." Mathematica Bohemica 146.4 (2021): 407-418. <http://eudml.org/doc/298164>.

@article{Aboutafail2021,
abstract = {We establish necessary and sufficient conditions under which weak Banach-Saks operators are weakly compact (respectively, L-weakly compact; respectively, M-weakly compact). As consequences, we give some interesting characterizations of order continuous norm (respectively, reflexive Banach lattice).},
author = {Aboutafail, Othman, Zraoula, Larbi, Hafidi, Noufissa},
journal = {Mathematica Bohemica},
keywords = {weak Banach-Saks operator; weakly compact operator; L-weakly compact operator; M-weakly compact operator; order continuous norm; positive Schur property; reflexive Banach space},
language = {eng},
number = {4},
pages = {407-418},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties of weak Banach-Saks operators},
url = {http://eudml.org/doc/298164},
volume = {146},
year = {2021},
}

TY - JOUR
AU - Aboutafail, Othman
AU - Zraoula, Larbi
AU - Hafidi, Noufissa
TI - Some properties of weak Banach-Saks operators
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 407
EP - 418
AB - We establish necessary and sufficient conditions under which weak Banach-Saks operators are weakly compact (respectively, L-weakly compact; respectively, M-weakly compact). As consequences, we give some interesting characterizations of order continuous norm (respectively, reflexive Banach lattice).
LA - eng
KW - weak Banach-Saks operator; weakly compact operator; L-weakly compact operator; M-weakly compact operator; order continuous norm; positive Schur property; reflexive Banach space
UR - http://eudml.org/doc/298164
ER -

References

top
  1. Aliprantis, C. D., Burkinshaw, O., 10.1007/978-1-4020-5008-4, Springer, Berlin (2006). (2006) Zbl1098.47001MR2262133DOI10.1007/978-1-4020-5008-4
  2. Alpay, S., Altin, B., Tonyali, C., 10.1023/A:1025840528211, Positivity 7 (2003), 135-139. (2003) Zbl1036.46018MR2028377DOI10.1023/A:1025840528211
  3. Aqzzouz, B., Aboutafail, O., Belghiti, T., H'Michane, J., 10.21136/MB.2013.143283, Math. Bohem. 138 (2013), 113-120. (2013) Zbl1289.46027MR3099302DOI10.21136/MB.2013.143283
  4. Aqzzouz, B., Elbour, A., H'Michane, J., 10.1016/j.jmaa.2008.12.063, J. Math. Anal. Appl. 354 (2009), 295-300. (2009) Zbl1167.47033MR2510440DOI10.1016/j.jmaa.2008.12.063
  5. Aqzzouz, B., Elbour, A., H'Michane, J., 10.36045/bbms/1320763136, Bull. Belg. Math. Soc. - Simon Stevin 18 (2011), 761-767. (2011) Zbl1250.47020MR2918181DOI10.36045/bbms/1320763136
  6. Aqzzouz, B., H'Michane, J., Aboutafail, O., 10.36045/bbms/1337864276, Bull. Belg. Math. Soc. - Simon Stevin 19 (2012), 329-338. (2012) Zbl1253.46027MR2977235DOI10.36045/bbms/1337864276
  7. Baernstein, A., 10.4064/sm-42-1-91-94, Stud. Math. 42 (1972), 91-94. (1972) Zbl0228.46014MR0305044DOI10.4064/sm-42-1-91-94
  8. Beauzamy, B., Propriété de Banach-Saks et modèles étalés, Séminaire sur la Géométrie des Espaces de Banach (1977-1978) École Polytech., Palaiseau (1978), 16 pages French. Zbl0386.46017MR0520205
  9. Chen, Z. L., Wickstead, A. W., 10.1016/S0019-3577(99)80025-1, Indag. Math., New Ser. 10 (1999), 321-336. (1999) Zbl1028.47028MR1819891DOI10.1016/S0019-3577(99)80025-1
  10. Ghoussoub, N., Johnson, W. B., 10.1090/S0002-9939-1984-0754710-8, Proc. Am. Math. Soc. 92 (1984), 233-238. (1984) Zbl0615.46022MR0754710DOI10.1090/S0002-9939-1984-0754710-8
  11. Meyer-Nieberg, P., 10.1007/978-3-642-76724-1, Universitext. Springer, Berlin (1991). (1991) Zbl0743.46015MR1128093DOI10.1007/978-3-642-76724-1
  12. Nishiura, T., Waterman, D., 10.4064/sm-23-1-53-57, Stud. Math. 23 (1963), 53-57. (1963) Zbl0121.09402MR0155167DOI10.4064/sm-23-1-53-57
  13. Rosenthal, H. P., Weakly independent sequences and the weak Banach-Saks property, Proceedings of the Durham Symposium on the Relations Between Infinite Dimensional and Finite-Dimentional Convexity Duke University, Durham (1975), 26 pages. 
  14. Wnuk, W., Banach Lattices with Order Continuous Norms, Advanced Topics in Mathematics. Polish Scientific Publishers, Warsaw (1999). (1999) Zbl0948.46017
  15. Zaanen, A. C., 10.1007/978-3-642-60637-3, Springer, Berlin (1997). (1997) Zbl0878.47022MR1631533DOI10.1007/978-3-642-60637-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.