Some properties of weak Banach-Saks operators
Othman Aboutafail; Larbi Zraoula; Noufissa Hafidi
Mathematica Bohemica (2021)
- Volume: 146, Issue: 4, page 407-418
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAboutafail, Othman, Zraoula, Larbi, and Hafidi, Noufissa. "Some properties of weak Banach-Saks operators." Mathematica Bohemica 146.4 (2021): 407-418. <http://eudml.org/doc/298164>.
@article{Aboutafail2021,
abstract = {We establish necessary and sufficient conditions under which weak Banach-Saks operators are weakly compact (respectively, L-weakly compact; respectively, M-weakly compact). As consequences, we give some interesting characterizations of order continuous norm (respectively, reflexive Banach lattice).},
author = {Aboutafail, Othman, Zraoula, Larbi, Hafidi, Noufissa},
journal = {Mathematica Bohemica},
keywords = {weak Banach-Saks operator; weakly compact operator; L-weakly compact operator; M-weakly compact operator; order continuous norm; positive Schur property; reflexive Banach space},
language = {eng},
number = {4},
pages = {407-418},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties of weak Banach-Saks operators},
url = {http://eudml.org/doc/298164},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Aboutafail, Othman
AU - Zraoula, Larbi
AU - Hafidi, Noufissa
TI - Some properties of weak Banach-Saks operators
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 407
EP - 418
AB - We establish necessary and sufficient conditions under which weak Banach-Saks operators are weakly compact (respectively, L-weakly compact; respectively, M-weakly compact). As consequences, we give some interesting characterizations of order continuous norm (respectively, reflexive Banach lattice).
LA - eng
KW - weak Banach-Saks operator; weakly compact operator; L-weakly compact operator; M-weakly compact operator; order continuous norm; positive Schur property; reflexive Banach space
UR - http://eudml.org/doc/298164
ER -
References
top- Aliprantis, C. D., Burkinshaw, O., 10.1007/978-1-4020-5008-4, Springer, Berlin (2006). (2006) Zbl1098.47001MR2262133DOI10.1007/978-1-4020-5008-4
- Alpay, S., Altin, B., Tonyali, C., 10.1023/A:1025840528211, Positivity 7 (2003), 135-139. (2003) Zbl1036.46018MR2028377DOI10.1023/A:1025840528211
- Aqzzouz, B., Aboutafail, O., Belghiti, T., H'Michane, J., 10.21136/MB.2013.143283, Math. Bohem. 138 (2013), 113-120. (2013) Zbl1289.46027MR3099302DOI10.21136/MB.2013.143283
- Aqzzouz, B., Elbour, A., H'Michane, J., 10.1016/j.jmaa.2008.12.063, J. Math. Anal. Appl. 354 (2009), 295-300. (2009) Zbl1167.47033MR2510440DOI10.1016/j.jmaa.2008.12.063
- Aqzzouz, B., Elbour, A., H'Michane, J., 10.36045/bbms/1320763136, Bull. Belg. Math. Soc. - Simon Stevin 18 (2011), 761-767. (2011) Zbl1250.47020MR2918181DOI10.36045/bbms/1320763136
- Aqzzouz, B., H'Michane, J., Aboutafail, O., 10.36045/bbms/1337864276, Bull. Belg. Math. Soc. - Simon Stevin 19 (2012), 329-338. (2012) Zbl1253.46027MR2977235DOI10.36045/bbms/1337864276
- Baernstein, A., 10.4064/sm-42-1-91-94, Stud. Math. 42 (1972), 91-94. (1972) Zbl0228.46014MR0305044DOI10.4064/sm-42-1-91-94
- Beauzamy, B., Propriété de Banach-Saks et modèles étalés, Séminaire sur la Géométrie des Espaces de Banach (1977-1978) École Polytech., Palaiseau (1978), 16 pages French. Zbl0386.46017MR0520205
- Chen, Z. L., Wickstead, A. W., 10.1016/S0019-3577(99)80025-1, Indag. Math., New Ser. 10 (1999), 321-336. (1999) Zbl1028.47028MR1819891DOI10.1016/S0019-3577(99)80025-1
- Ghoussoub, N., Johnson, W. B., 10.1090/S0002-9939-1984-0754710-8, Proc. Am. Math. Soc. 92 (1984), 233-238. (1984) Zbl0615.46022MR0754710DOI10.1090/S0002-9939-1984-0754710-8
- Meyer-Nieberg, P., 10.1007/978-3-642-76724-1, Universitext. Springer, Berlin (1991). (1991) Zbl0743.46015MR1128093DOI10.1007/978-3-642-76724-1
- Nishiura, T., Waterman, D., 10.4064/sm-23-1-53-57, Stud. Math. 23 (1963), 53-57. (1963) Zbl0121.09402MR0155167DOI10.4064/sm-23-1-53-57
- Rosenthal, H. P., Weakly independent sequences and the weak Banach-Saks property, Proceedings of the Durham Symposium on the Relations Between Infinite Dimensional and Finite-Dimentional Convexity Duke University, Durham (1975), 26 pages.
- Wnuk, W., Banach Lattices with Order Continuous Norms, Advanced Topics in Mathematics. Polish Scientific Publishers, Warsaw (1999). (1999) Zbl0948.46017
- Zaanen, A. C., 10.1007/978-3-642-60637-3, Springer, Berlin (1997). (1997) Zbl0878.47022MR1631533DOI10.1007/978-3-642-60637-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.