A commutativity theorem for Banach algebras
Donald Z. Spicer (1973)
Colloquium Mathematicae
Similarity:
Donald Z. Spicer (1973)
Colloquium Mathematicae
Similarity:
V. Runde (2001)
Studia Mathematica
Similarity:
We define a Banach algebra 𝔄 to be dual if 𝔄 = (𝔄⁎)* for a closed submodule 𝔄⁎ of 𝔄*. The class of dual Banach algebras includes all W*-algebras, but also all algebras M(G) for locally compact groups G, all algebras ℒ(E) for reflexive Banach spaces E, as well as all biduals of Arens regular Banach algebras. The general impression is that amenable, dual Banach algebras are rather the exception than the rule. We confirm this impression. We first show that under certain conditions...
Juan J. Font (1998)
Colloquium Mathematicae
Similarity:
A. Jabbari, T. Mehdi Abad, M. Zaman Abadi (2011)
Colloquium Mathematicae
Similarity:
Generalizing the concept of inner amenability for Lau algebras, we define and study the notion of φ-inner amenability of any Banach algebra A, where φ is a homomorphism from A onto ℂ. Several characterizations of φ-inner amenable Banach algebras are given.
Mehdi Nemati (2015)
Colloquium Mathematicae
Similarity:
We investigate some homological notions of Banach algebras. In particular, for a locally compact group G we characterize the most important properties of G in terms of some homological properties of certain Banach algebras related to this group. Finally, we use these results to study generalized biflatness and biprojectivity of certain products of Segal algebras on G.
Antonio Fernández López, Eulalia García Rus (1986)
Extracta Mathematicae
Similarity:
Matthew Daws (2007)
Studia Mathematica
Similarity:
We study representations of Banach algebras on reflexive Banach spaces. Algebras which admit such representations which are bounded below seem to be a good generalisation of Arens regular Banach algebras; this class includes dual Banach algebras as defined by Runde, but also all group algebras, and all discrete (weakly cancellative) semigroup algebras. Such algebras also behave in a similar way to C*- and W*-algebras; we show that interpolation space techniques can be used in place of...
Krzysztof Jarosz (2005)
Banach Center Publications
Similarity:
J. Neggers, Hee Sik Kim (2002)
Matematički Vesnik
Similarity:
Martin E. Walter (1986)
Mathematica Scandinavica
Similarity:
Andrew Kepert (1994)
Mathematica Scandinavica
Similarity:
H. G. Dales, A. Ülger (2015)
Studia Mathematica
Similarity:
In this paper, we shall study contractive and pointwise contractive Banach function algebras, in which each maximal modular ideal has a contractive or pointwise contractive approximate identity, respectively, and we shall seek to characterize these algebras. We shall give many examples, including uniform algebras, that distinguish between contractive and pointwise contractive Banach function algebras. We shall describe a contractive Banach function algebra which is not equivalent to...
C. J. Read (2005)
Studia Mathematica
Similarity:
It is a long standing open problem whether there is any infinite-dimensional commutative Banach algebra without nontrivial closed ideals. This is in some sense the Banach algebraists' counterpart to the invariant subspace problem for Banach spaces. We do not here solve this famous problem, but solve a related problem, that of finding (necessarily commutative) infinite-dimensional normed algebras which do not even have nontrivial closed subalgebras. Our examples are incomplete normed...
Rachid ElHarti, Mohamed Mabrouk (2015)
Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica
Similarity:
Let A and B be two non-unital reduced Banach *-algebras and φ: A → B be a vector space isomorphism. The two following statement holds: If φ is a *-isomorphism, then φ is isometric (with respect to the C*-norms), bipositive and φ maps some approximate identity of A onto an approximate identity of B. Conversely, any two of the later three properties imply that φ is a *-isomorphism. Finally, we show that a unital and self-adjoint spectral isometry between semi-simple Hermitian Banach algebras...
Yong Zhang (2010)
Banach Center Publications
Similarity:
We survey the recent investigations on approximate amenability/contractibility and pseudo-amenability/contractibility for Banach algebras. We will discuss the core problems concerning these notions and address the significance of any solutions to them to the development of the field. A few new results are also included.
Chia Zargeh (2021)
Communications in Mathematics
Similarity:
In this paper we introduce the notion of existentially closed Leibniz algebras. Then we use HNN-extensions of Leibniz algebras in order to prove an embedding theorem.
Ferdinand Beckhoff (1993)
Mathematica Slovaca
Similarity: