Disjointness preserving mappings between Fourier algebras
Colloquium Mathematicae (1998)
- Volume: 77, Issue: 2, page 179-187
 - ISSN: 0010-1354
 
Access Full Article
topHow to cite
topFont, Juan J.. "Disjointness preserving mappings between Fourier algebras." Colloquium Mathematicae 77.2 (1998): 179-187. <http://eudml.org/doc/210582>.
@article{Font1998,
	author = {Font, Juan J.},
	journal = {Colloquium Mathematicae},
	keywords = {multiplier; locally compact group; Fourier-Stieltjes algebra; Fourier algebra; amenable groups; disjointness preserving bijection},
	language = {eng},
	number = {2},
	pages = {179-187},
	title = {Disjointness preserving mappings between Fourier algebras},
	url = {http://eudml.org/doc/210582},
	volume = {77},
	year = {1998},
}
TY  - JOUR
AU  - Font, Juan J.
TI  - Disjointness preserving mappings between Fourier algebras
JO  - Colloquium Mathematicae
PY  - 1998
VL  - 77
IS  - 2
SP  - 179
EP  - 187
LA  - eng
KW  - multiplier; locally compact group; Fourier-Stieltjes algebra; Fourier algebra; amenable groups; disjointness preserving bijection
UR  - http://eudml.org/doc/210582
ER  - 
References
top- [1] Y. Abramovich, Multiplicative representation of disjointness preserving operators, Indag. Math. 45 (1983), 265-279. Zbl0527.47025
 - [2] J. Araujo, E. Beckenstein and L. Narici, Biseparating maps and homeomorphic real-compactifications, J. Math. Anal. Appl. 192 (1995), 258-265. Zbl0828.47024
 - [3] J. Araujo and J. J. Font, Linear isometries between subspaces of continuous functions, Trans. Amer. Math. Soc. 349 (1997), 413-428. Zbl0869.46014
 - [4] W. Arendt and J. De Cannière, Order isomorphisms of Fourier algebras, J. Funct. Anal. 50 (1983), 1-7. Zbl0506.43001
 - [5] W. Arendt and D. R. Hart, The spectrum of quasi-invertible disjointness preserving operators, ibid. 68 (1986), 149-167. Zbl0611.47030
 - [6] A. Derighetti, Some results on the Fourier-Stieltjes algebra of a locally compact group, Comment. Math. Helv. 45 (1970), 219-228. Zbl0211.15502
 - [7] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. Zbl0169.46403
 - [8] A. Figà-Talamanca et M. Picardello, Multiplicateurs de A(G) qui ne sont pas dans B(G), C. R. Acad. Sci. Paris Sér. A 277 (1973), 117-119. Zbl0258.43012
 - [9] J. J. Font, Automatic continuity of certain linear isomorphisms between regular Banach function algebras, Glasgow Math. J. 39 (1997), 333-343. Zbl0901.46042
 - [10] J. J. Font and S. Hernández, On separating maps between locally compact spaces, Arch. Math. (Basel) 63 (1994), 158-165. Zbl0805.46049
 - [11] J. J. Font and S. Hernández, Automatic continuity and representation of certain linear isomorphisms between group algebras, Indag. Math. (N.S.) 6 (1995), 397-409. Zbl0840.43006
 - [12] J. J. Font and S. Hernández, Algebraic characterizations of locally compact groups, J. Austral. Math. Soc. Ser. A 62 (1997), 405-420. Zbl0892.47033
 - [13] T. W. Gamelin, Uniform Algebras, Chelsea, New York, 1969.
 - [14] S. Hernández, E. Beckenstein and L. Narici, Banach-Stone theorems and separating maps, Manuscripta Math. 86 (1995), 409-416. Zbl0827.46032
 - [15] C. Huijsmans and B. de Pagter, Invertible disjointness preserving operators, Proc. Edinburgh Math. Soc. 37 (1993), 125-132.
 - [16] K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 (1990), 139-144. Zbl0714.46040
 - [17] K A. Koldunov, Hammerstein operators preserving disjointness, Proc. Amer. Math. Soc. 123 (1995), 1083-1095. Zbl0827.47051
 - [18] R. Larsen, An Introduction to the Theory of Multipliers, Springer, Berlin, 1971. Zbl0213.13301
 - [19] M. E. Walter, -algebras and nonabelian harmonic analysis, J. Funct. Anal. 11 (1972), 17-38.
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.