An approximative generalization of Zahorski's theorem on derivative
H. H. Pu, H. W. Pu (1978)
Colloquium Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
H. H. Pu, H. W. Pu (1978)
Colloquium Mathematicae
Similarity:
E. Torrance (1938)
Fundamenta Mathematicae
Similarity:
Jerzy Kąkol (1986)
Mathematica Slovaca
Similarity:
P. Dierolf, S. Dierolf, L. Drewnowski (1978)
Colloquium Mathematicae
Similarity:
J. Mioduszewski (1971)
Colloquium Mathematicae
Similarity:
Ewert, Janina (1994)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Hejduk, Jacek (2015-11-10T11:42:31Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
E. Lorch (1968)
Studia Mathematica
Similarity:
Aleksander Maliszewski (2006)
Mathematica Slovaca
Similarity:
R. C. Haworth, R. A McCoy
Similarity:
CONTENTSIntroduction............................................................................................................ 5I. Basic properties of Baire spaces................................................................... 61. Nowhere dense sets............................................................................................... 62. First and second category sets............................................................................. 83. Baire spaces................................................................................................................
Zbigniew Grande (2009)
Colloquium Mathematicae
Similarity:
Let I ⊂ ℝ be an open interval and let A ⊂ I be any set. Every Baire 1 function f: I → ℝ coincides on A with a function g: I → ℝ which is simultaneously approximately continuous and quasicontinuous if and only if the set A is nowhere dense and of Lebesgue measure zero.