The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “𝓤-filters and uniform compactification”

Quantifying completion.

Lowen, Robert, Windels, Bart (2000)

International Journal of Mathematics and Mathematical Sciences

Similarity:

Variations of uniform completeness related to realcompactness

Miroslav Hušek (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Various characterizations of realcompactness are transferred to uniform spaces giving non-equivalent concepts. Their properties, relations and characterizations are described in this paper. A Shirota-like characterization of certain uniform realcompactness proved by Garrido and Meroño for metrizable spaces is generalized to uniform spaces. The paper may be considered as a unifying survey of known results with some new results added.

Uniform topology onEQ-algebras

Jiang Yang, Xiao Long Xin, Peng Fei He (2017)

Open Mathematics

Similarity:

In this paper, we use filters of an EQ-algebra E to induce a uniform structure (E, 𝓚), and then the part 𝓚 induce a uniform topology 𝒯 in E. We prove that the pair (E, 𝒯) is a topological EQ-algebra, and some properties of (E, 𝒯) are investigated. In particular, we show that (E, 𝒯) is a first-countable, zero-dimensional, disconnected and completely regular space. Finally, by using convergence of nets, the convergence of topological EQ-algebras is obtained.

On the quantification of uniform properties

Robert Lowen, Bart Windels (1997)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Approach spaces ([4], [5]) turned out to be a natural setting for the quantification of topological properties. Thus a measure of compactness for approach spaces generalizing the well-known Kuratowski measure of non-compactness for metric spaces was defined ([3]). This article shows that approach uniformities (introduced in [6]) have the same advantage with respect to uniform concepts: they allow a nice quantification of uniform properties, such as total boundedness and completeness. ...