K-unirationality of conic bundles, the Kneser-Tits conjecture for spinor groups and central simple algebras
V. I. Yanchevskii (1990)
Banach Center Publications
Similarity:
V. I. Yanchevskii (1990)
Banach Center Publications
Similarity:
Oliver, Bob (1998)
Documenta Mathematica
Similarity:
T. Jakubowski (1974)
Colloquium Mathematicae
Similarity:
Adgam Yakhievich Sultanov (2016)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity:
The descriptions of Weil bundles, lifts of functions and vector fields are given. Actions of the automorphisms group of the Whitney sum of algebras of dual numbers on a Weil bundle of the first order are defined.
Vaisman, I. (1998)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Wojciech Kucharz (2009)
Annales Polonici Mathematici
Similarity:
We show some advantages of splitting vector bundles by blowups.
J. J. Konderak (1991)
Annales Polonici Mathematici
Similarity:
Eberhard Kirchberg, Simon Wassermann (1995)
Mathematische Annalen
Similarity:
Ivan Kolář (1974)
Colloquium Mathematicae
Similarity:
P. Szeptycki (1983)
Annales Polonici Mathematici
Similarity:
Július Korbas (1994)
Manuscripta mathematica
Similarity:
Jan A. Rempała (1988)
Annales Polonici Mathematici
Similarity:
Georges Elencwajg, Otto Forster (1979)
Mathematische Annalen
Similarity:
Yukitaka Abe (1994)
Mathematische Zeitschrift
Similarity:
Andrew James Bruce (2024)
Archivum Mathematicum
Similarity:
We introduce the notion of a Lie semiheap as a smooth manifold equipped with a para-associative ternary product. For a particular class of Lie semiheaps we establish the existence of left-invariant vector fields. Furthermore, we show how such manifolds are related to Lie groups and establish the analogue of principal bundles in this ternary setting. In particular, we generalise the well-known ‘heapification’ functor to the ambience of Lie groups and principal bundles.
J. Kurek, W. M. Mikulski (2005)
Colloquium Mathematicae
Similarity:
We classify all natural operators lifting linear vector fields on vector bundles to vector fields on vertical fiber product preserving gauge bundles over vector bundles. We explain this result for some known examples of such bundles.
Maria H. Paula Leite Mello (1986/87)
Manuscripta mathematica
Similarity:
Atsuhsi Moriwaki (1992)
Manuscripta mathematica
Similarity: