The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The Vertex-Rainbow Index of A Graph”

On the Rainbow Vertex-Connection

Xueliang Li, Yongtang Shi (2013)

Discussiones Mathematicae Graph Theory

Similarity:

A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertexconnected. It was proved that if G is a graph of order n with minimum degree δ, then rvc(G) < 11n/δ. In this paper, we show that rvc(G) ≤ 3n/(δ+1)+5 for [xxx] and n ≥ 290, while rvc(G) ≤ 4n/(δ...

Rainbow Vertex-Connection and Forbidden Subgraphs

Wenjing Li, Xueliang Li, Jingshu Zhang (2018)

Discussiones Mathematicae Graph Theory

Similarity:

A path in a vertex-colored graph is called vertex-rainbow if its internal vertices have pairwise distinct colors. A vertex-colored graph G is rainbow vertex-connected if for any two distinct vertices of G, there is a vertex-rainbow path connecting them. For a connected graph G, the rainbow vertex-connection number of G, denoted by rvc(G), is defined as the minimum number of colors that are required to make G rainbow vertex-connected. In this paper, we find all the families ℱ of connected...

Vertex Colorings without Rainbow Subgraphs

Wayne Goddard, Honghai Xu (2016)

Discussiones Mathematicae Graph Theory

Similarity:

Given a coloring of the vertices of a graph G, we say a subgraph is rainbow if its vertices receive distinct colors. For a graph F, we define the F-upper chromatic number of G as the maximum number of colors that can be used to color the vertices of G such that there is no rainbow copy of F. We present some results on this parameter for certain graph classes. The focus is on the case that F is a star or triangle. For example, we show that the K3-upper chromatic number of any maximal...

On rainbow connection.

Caro, Yair, Lev, Arie, Roditty, Yehuda, Tuza, Zsolt, Yuster, Raphael (2008)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

A Gallai-type equality for the total domination number of a graph

Sanming Zhou (2004)

Discussiones Mathematicae Graph Theory

Similarity:

We prove the following Gallai-type equality γₜ(G) + εₜ(G) = p for any graph G with no isolated vertex, where p is the number of vertices of G, γₜ(G) is the total domination number of G, and εₜ(G) is the maximum integer s such that there exists a spanning forest F with s the number of pendant edges of F minus the number of star components of F.

Worm Colorings

Wayne Goddard, Kirsti Wash, Honghai Xu (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Given a coloring of the vertices, we say subgraph H is monochromatic if every vertex of H is assigned the same color, and rainbow if no pair of vertices of H are assigned the same color. Given a graph G and a graph F, we define an F-WORM coloring of G as a coloring of the vertices of G without a rainbow or monochromatic subgraph H isomorphic to F. We present some results on this concept especially as regards to the existence, complexity, and optimization within certain graph classes....

Rainbow H -factors.

Yuster, Raphael (2006)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

One-two descriptor of graphs

K. CH. Das, I. Gutman, D. Vukičević (2011)

Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques

Similarity:

Vertex rainbow colorings of graphs

Futaba Fujie-Okamoto, Kyle Kolasinski, Jianwei Lin, Ping Zhang (2012)

Discussiones Mathematicae Graph Theory

Similarity:

In a properly vertex-colored graph G, a path P is a rainbow path if no two vertices of P have the same color, except possibly the two end-vertices of P. If every two vertices of G are connected by a rainbow path, then G is vertex rainbow-connected. A proper vertex coloring of a connected graph G that results in a vertex rainbow-connected graph is a vertex rainbow coloring of G. The minimum number of colors needed in a vertex rainbow coloring of G is the vertex rainbow connection number...

The vertex monophonic number of a graph

A.P. Santhakumaran, P. Titus (2012)

Discussiones Mathematicae Graph Theory

Similarity:

For a connected graph G of order p ≥ 2 and a vertex x of G, a set S ⊆ V(G) is an x-monophonic set of G if each vertex v ∈ V(G) lies on an x -y monophonic path for some element y in S. The minimum cardinality of an x-monophonic set of G is defined as the x-monophonic number of G, denoted by mₓ(G). An x-monophonic set of cardinality mₓ(G) is called a mₓ-set of G. We determine bounds for it and characterize graphs which realize these bounds. A connected graph of order p with vertex monophonic...