Gaussian Decay of the Magnetic Eigenfunctions.
L. Erdös (1996)
Geometric and functional analysis
Similarity:
L. Erdös (1996)
Geometric and functional analysis
Similarity:
Mejjaoli, H. (2009)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 35Q55,42B10. In this paper, we study the Schrödinger equation associated with the Dunkl operators, we study the dispersive phenomena and we prove the Strichartz estimates for this equation. Some applications are discussed.
Rovskiĭ, V.A. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Renze, John, Wagon, Stan, Wick, Brian (2001)
Experimental Mathematics
Similarity:
M. Talagrand (1993)
Geometric and functional analysis
Similarity:
Elliot H. Lieb (1990)
Inventiones mathematicae
Similarity:
Filip Ficek (2023)
Archivum Mathematicum
Similarity:
Nonlinear Schrödinger equations are usually investigated with the use of the variational methods that are limited to energy-subcritical dimensions. Here we present the approach based on the shooting method that can give the proof of existence of the ground states in critical and supercritical cases. We formulate the assumptions on the system that are sufficient for this method to work. As examples, we consider Schrödinger-Newton and Gross-Pitaevskii equations with harmonic potentials. ...
Cardoso, Fernando, Cuevas, Claudio, Vodev, Georgi (2008)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 35L15, 35B40, 47F05. Introduction and statement of results. In the present paper we will be interested in studying the decay properties of the Schrödinger group. The authors have been supported by the agreement Brazil-France in Mathematics – Proc. 69.0014/01-5. The first two authors have also been partially supported by the CNPq-Brazil.
Giuseppe Maria Coclite (2002)
Annales Polonici Mathematici
Similarity:
We prove the existence of a sequence of radial solutions with negative energy of the Schrödinger-Maxwell equations under the action of a negative potential.
Luis Escauriaza, Carlos E. Kenig, G. Ponce, Luis Vega (2008)
Journal of the European Mathematical Society
Similarity:
We prove the logarithmic convexity of certain quantities, which measure the quadratic exponential decay at infinity and within two characteristic hyperplanes of solutions of Schrödinger evolutions. As a consequence we obtain some uniqueness results that generalize (a weak form of) Hardy’s version of the uncertainty principle. We also obtain corresponding results for heat evolutions.
Pierre Duclos, Markus Klein (1985)
Journées équations aux dérivées partielles
Similarity:
Krzysztof Bogdan, Wolfhard Hansen, Tomasz Jakubowski (2008)
Studia Mathematica
Similarity:
We construct the fundamental solution of for functions q with a certain integral space-time relative smallness, in particular for those satisfying a relative Kato condition. The resulting transition density is comparable to the Gaussian kernel in finite time, and it is even asymptotically equal to the Gaussian kernel (in small time) under the relative Kato condition. The result is generalized to arbitrary strictly positive and finite time-nonhomogeneous transition densities on measure...
Gabriele Grillo (2004)
Colloquium Mathematicae
Similarity:
We prove pointwise lower bounds for the heat kernel of Schrödinger semigroups on Euclidean domains under Dirichlet boundary conditions. The bounds take into account non-Gaussian corrections for the kernel due to the geometry of the domain. The results are applied to prove a general lower bound for the Schrödinger heat kernel in horn-shaped domains without assuming intrinsic ultracontractivity for the free heat semigroup.
Manfred G. Madritsch (2008)
Acta Arithmetica
Similarity:
S. A. Denisov (2010)
Mathematical Modelling of Natural Phenomena
Similarity:
In this short note, we apply the technique developed in [Math. Model. Nat. Phenom., 5 (2010), No. 4, 122-149] to study the long-time evolution for Schrödinger equation with slowly decaying potential.
Daniel Tataru (2012)
Journées Équations aux dérivées partielles
Similarity:
The Schrödinger map equation is a geometric Schrödinger model, closely associated to the harmonic heat flow and to the wave map equation. The aim of these notes is to describe recent and ongoing work on this model, as well as a number of related open problems.
Nakao Hayashi, Tohru Ozawa (1988/89)
Mathematische Zeitschrift
Similarity:
Nathan Keller, Elchanan Mossel, Arnab Sen (2014)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
In a recent paper, we presented a new definition of influences in product spaces of continuous distributions, and showed that analogues of the most fundamental results on discrete influences, such as the KKL theorem, hold for the new definition in Gaussian space. In this paper we prove Gaussian analogues of two of the central applications of influences: Talagrand’s lower bound on the correlation of increasing subsets of the discrete cube, and the Benjamini–Kalai–Schramm (BKS) noise sensitivity...