On the foundations of k-group theory
W. F. Lamartin
Similarity:
CONTENTSIntroduction................... 51. k-spaces.................... 62. k-groups.................... 14References..................... 32
W. F. Lamartin
Similarity:
CONTENTSIntroduction................... 51. k-spaces.................... 62. k-groups.................... 14References..................... 32
Sidney A. Morris, N. Kelly (1975)
Matematický časopis
Similarity:
Anna Giordano Bruno (2008)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Warren B. Moors (2016)
Fundamenta Mathematicae
Similarity:
The purpose of this note is two-fold: firstly, to give a new and interesting result concerning separate and joint continuity, and secondly, to give a stream-lined (and self-contained) proof of the fact that "tame" CHART groups are topological groups.
Otera, Daniele Ettore, Russo, Francesco G. (2010)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Janusz Grabowski, Wojciech Wojtyński (1990)
Colloquium Mathematicae
Similarity:
Colin C. Graham (1978)
Colloquium Mathematicae
Similarity:
Montserrat Bruguera, María Jesús Chasco (2001)
Czechoslovak Mathematical Journal
Similarity:
A reflexive topological group is called strongly reflexive if each closed subgroup and each Hausdorff quotient of the group and of its dual group is reflexive. In this paper we establish an adequate concept of strong reflexivity for convergence groups. We prove that complete metrizable nuclear groups and products of countably many locally compact topological groups are BB-strongly reflexive.
Mohammad Reza Darafsheh, H. Sharifi (2007)
Mathematica Slovaca
Similarity: