The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A simple proof in Monge-Kantorovich duality theory”

A general duality theorem for the Monge-Kantorovich transport problem

Mathias Beiglböck, Christian Léonard, Walter Schachermayer (2012)

Studia Mathematica

Similarity:

The duality theory for the Monge-Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be Polish and equipped with Borel probability measures μ and ν. The transport cost function c: X × Y → [0,∞] is assumed to be Borel. Our main result states that in this setting there is no duality gap provided the optimal transport problem is formulated in a suitably relaxed way. The relaxed transport problem is defined as the limiting cost of the partial...

A decomposition of complex Monge-Ampère measures

Yang Xing (2007)

Annales Polonici Mathematici

Similarity:

We prove a decomposition theorem for complex Monge-Ampère measures of plurisubharmonic functions in connection with their pluripolar sets.

Monge-Ampère boundary measures

Urban Cegrell, Berit Kemppe (2009)

Annales Polonici Mathematici

Similarity:

We study swept-out Monge-Ampère measures of plurisubharmonic functions and boundary values related to those measures.

Duality theorems for Kantorovich-Rubinstein and Wasserstein functionals

S. T. Rachev, R. M.

Similarity:

CONTENTS§0. Introduction...................................................................................................................................5§1. Notation and terminology..............................................................................................................6§2. A generalization of the Kantorovich-Rubinstein theorem..............................................................8§3. Application: explicit representations for a class of probability metrics.........................................14§4....