Displaying similar documents to “Weak* properties of weighted convolution algebras II”

Good weights for weighted convolution algebras

Sandy Grabiner (2010)

Banach Center Publications

Similarity:

Weighted convolution algebras L¹(ω) on R⁺ = [0,∞) have been studied for many years. At first results were proved for continuous weights; and then it was shown that all such results would also hold for properly normalized right continuous weights. For measurable weights, it was shown that one could construct a properly normalized right continuous weight ω' with L¹(ω') = L¹(ω) with an equivalent norm. Thus all algebraic and norm-topology results remained true for measurable weights. We...

Weak type radial convolution operators on free groups

Tadeusz Pytlik, Ryszard Szwarc (2008)

Studia Mathematica

Similarity:

Radial convolution operators on free groups with nonnegative kernel of weak type (2,2) and of restricted weak type (2,2) are characterized. Estimates of weak type (p,p) are obtained as well for 1 < p < 2.

On analytical properties of generalized convolutions

Zeev (Vladimir) Volkovich, Dvora Toledano-Kitai, Renata Avros (2010)

Banach Center Publications

Similarity:

The paper is, for the most part, devoted to a survey of the analytical properties of generalized convolution algebras and their realizations. This issue appears to be the state of the art until now because intensive research on the generalized convolution and the related models still persists.

A limit theorem for the q-convolution

Anna Kula (2011)

Banach Center Publications

Similarity:

The q-convolution is a measure-preserving transformation which originates from non-commutative probability, but can also be treated as a one-parameter deformation of the classical convolution. We show that its commutative aspect is further certified by the fact that the q-convolution satisfies all of the conditions of the generalized convolution (in the sense of Urbanik). The last condition of Urbanik's definition, the law of large numbers, is the crucial part to be proved and the non-commutative...