Isomorphic characterizations of Hilbert spaces by orthogonal series with vector valued coefficients
S. Kwapien (1972-1973)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
S. Kwapien (1972-1973)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
Guessous, Mohamed (1997)
Journal of Convex Analysis
Similarity:
R. Dudley (1970)
Studia Mathematica
Similarity:
T. Flett (1972)
Studia Mathematica
Similarity:
Lothar Göttsche (1990)
Manuscripta mathematica
Similarity:
E. Odell, Th. Schlumprecht (1993)
Geometric and functional analysis
Similarity:
R. Sztencel, P. Zaremba (1981)
Colloquium Mathematicae
Similarity:
Petruševski, Ljiljana (1989)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Petruševski, Ljiljana (1989)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Fernand Pelletier, Rebhia Saffidine (2013)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
The purpose of this paper is to give an illustration of results on integrability of distributions and orbits of vector fields on Banach manifolds obtained in [5] and [4]. Using arguments and results of these papers, in the context of a separable Hilbert space, we give a generalization of a Theorem of accessibility contained in [3] and [6] for articulated arms and snakes in a finite dimensional Hilbert space.
Eberhard Gerlach (1971)
Annales de l'institut Fourier
Similarity:
A general theorem on Hilbert subspaces of dually nuclear spaces is proved, from which all previous results of K. Maurin and the writer on regularity of generalized eigenfunctions follow as simple corollaries. In addition some supplements to L. Schwartz’s work on Hilbert subspaces in spaces of smooth functions are given.
Migórski, S. (1995)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Pierre Dèbes (1996)
Manuscripta mathematica
Similarity:
S. Pilipović (1987)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
N. J. Kalton (2008)
Studia Mathematica
Similarity:
We show that if X is an infinite-dimensional Banach space in which every finite-dimensional subspace is λ-complemented with λ ≤ 2 then X is (1 + C√(λ-1))-isomorphic to a Hilbert space, where C is an absolute constant; this estimate (up to the constant C) is best possible. This answers a question of Kadets and Mityagin from 1973. We also investigate the finite-dimensional versions of the theorem.