Displaying similar documents to “Topological classification of closed convex sets in Fréchet spaces”

On Fréchet differentiability of convex functions on Banach spaces

Wee-Kee Tang (1995)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Equivalent conditions for the separability of the range of the subdifferential of a given convex Lipschitz function f defined on a separable Banach space are studied. The conditions are in terms of a majorization of f by a C 1 -smooth function, separability of the boundary for f or an approximation of f by Fréchet smooth convex functions.

On closed sets with convex projections in Hilbert space

Stoyu Barov, Jan J. Dijkstra (2007)

Fundamenta Mathematicae

Similarity:

Let k be a fixed natural number. We show that if C is a closed and nonconvex set in Hilbert space such that the closures of the projections onto all k-hyperplanes (planes with codimension k) are convex and proper, then C must contain a closed copy of Hilbert space. In order to prove this result we introduce for convex closed sets B the set k ( B ) consisting of all points of B that are extremal with respect to projections onto k-hyperplanes. We prove that k ( B ) is precisely the intersection of...

Generalized characterization of the convex envelope of a function

Fethi Kadhi (2002)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

We investigate the minima of functionals of the form [ a , b ] g ( u ˙ ( s ) ) d s where g is strictly convex. The admissible functions u : [ a , b ] are not necessarily convex and satisfy u f on [ a , b ] , u ( a ) = f ( a ) , u ( b ) = f ( b ) , f is a fixed function on [ a , b ] . We show that the minimum is attained by f ¯ , the convex envelope of f .

Topological classification of strong duals to nuclear (LF)-spaces

Taras Banakh (2000)

Studia Mathematica

Similarity:

We show that the strong dual X’ to an infinite-dimensional nuclear (LF)-space is homeomorphic to one of the spaces: ω , , Q × , ω × , or ( ) ω , where = l i m n and Q = [ - 1 , 1 ] ω . In particular, the Schwartz space D’ of distributions is homeomorphic to ( ) ω . As a by-product of the proof we deduce that each infinite-dimensional locally convex space which is a direct limit of metrizable compacta is homeomorphic either to or to Q × . In particular, the strong dual to any metrizable infinite-dimensional Montel space is homeomorphic...

Countably convex G δ sets

Vladimir Fonf, Menachem Kojman (2001)

Fundamenta Mathematicae

Similarity:

We investigate countably convex G δ subsets of Banach spaces. A subset of a linear space is countably convex if it can be represented as a countable union of convex sets. A known sufficient condition for countable convexity of an arbitrary subset of a separable normed space is that it does not contain a semi-clique [9]. A semi-clique in a set S is a subset P ⊆ S so that for every x ∈ P and open neighborhood u of x there exists a finite set X ⊆ P ∩ u such that conv(X) ⊈ S. For closed sets...

Convex universal fixers

Magdalena Lemańska, Rita Zuazua (2012)

Discussiones Mathematicae Graph Theory

Similarity:

In [1] Burger and Mynhardt introduced the idea of universal fixers. Let G = (V, E) be a graph with n vertices and G’ a copy of G. For a bijective function π: V(G) → V(G’), define the prism πG of G as follows: V(πG) = V(G) ∪ V(G’) and E ( π G ) = E ( G ) E ( G ' ) M π , where M π = u π ( u ) | u V ( G ) . Let γ(G) be the domination number of G. If γ(πG) = γ(G) for any bijective function π, then G is called a universal fixer. In [9] it is conjectured that the only universal fixers are the edgeless graphs K̅ₙ. In this work we generalize the concept...

A "hidden" characterization of approximatively polyhedral convex sets in Banach spaces

Taras Banakh, Ivan Hetman (2012)

Studia Mathematica

Similarity:

A closed convex subset C of a Banach space X is called approximatively polyhedral if for each ε > 0 there is a polyhedral (= intersection of finitely many closed half-spaces) convex set P ⊂ X at Hausdorff distance < ε from C. We characterize approximatively polyhedral convex sets in Banach spaces and apply the characterization to show that a connected component of the space C o n v ( X ) of closed convex subsets of X endowed with the Hausdorff metric is separable if and only if contains a...

The Young inequality and the Δ₂-condition

Philippe Laurençot (2002)

Colloquium Mathematicae

Similarity:

If φ: [0,∞) → [0,∞) is a convex function with φ(0) = 0 and conjugate function φ*, the inequality x y ε φ ( x ) + C ε φ * ( y ) is shown to hold true for every ε ∈ (0,∞) if and only if φ* satisfies the Δ₂-condition.

Smoothing a polyhedral convex function via cumulant transformation and homogenization

Alberto Seeger (1997)

Annales Polonici Mathematici

Similarity:

Given a polyhedral convex function g: ℝⁿ → ℝ ∪ +∞, it is always possible to construct a family g t > 0 which converges pointwise to g and such that each gₜ: ℝⁿ → ℝ is convex and infinitely often differentiable. The construction of such a family g t > 0 involves the concept of cumulant transformation and a standard homogenization procedure.

A d.c. C 1 function need not be difference of convex C 1 functions

David Pavlica (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In [2] a delta convex function on 2 is constructed which is strictly differentiable at 0 but it is not representable as a difference of two convex function of this property. We improve this result by constructing a delta convex function of class C 1 ( 2 ) which cannot be represented as a difference of two convex functions differentiable at 0. Further we give an example of a delta convex function differentiable everywhere which is not strictly differentiable at 0.