Convex universal fixers
Magdalena Lemańska; Rita Zuazua
Discussiones Mathematicae Graph Theory (2012)
- Volume: 32, Issue: 4, page 807-812
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2004) 303-318, doi: 10.7151/dmgt.1233. Zbl1064.05111
- [2] A.P. Burger and C.M. Mynhardt, Regular graphs are not universal fixers, Discrete Math. 310 (2010) 364-368, doi: 10.1016/j.disc.2008.09.016. Zbl1216.05098
- [3] E.J. Cockayne, R.G. Gibson and C.M. Mynhardt, Claw-free graphs are not universal fixers, Discrete Math. 309 (2009) 128-133, doi: 10.1016/j.disc.2007.12.053. Zbl1219.05116
- [4] R.G. Gibson, Bipartite graphs are not universal fixers, Discrete Math. 308 (2008) 5937-5943, doi: 10.1016/j.disc.2007.11.006. Zbl1181.05068
- [5] M. Lemańska, Weakly convex and convex domination numbers, Opuscula Math. 24 (2004) 181-188. Zbl1076.05060
- [6] J. Cyman, M. Lemańska and J. Raczek, Graphs with convex domination number close to their order, Discuss. Math. Graph Theory 26 (2006) 307-316, doi: 10.7151/dmgt.1322. Zbl1140.05302
- [7] J. Raczek and M. Lemańska, A note of the weakly convex and convex domination numbers of a torus, Discrete Appl. Math. 158 (2010) 1708-1713, doi: 10.1016/j.dam.2010.06.001. Zbl1208.05102
- [8] M. Lemańska, I. González Yero and J.A. Rodríguez-Velázquez, Nordhaus-Gaddum results for a convex domination number of a graph, Acta Math. Hungar., to appear (2011).
- [9] C.M. Mynhardt and Z. Xu, Domination in Prisms of Graphs: Universal Fixers, Util. Math. 78 (2009) 185-201. Zbl1284.05199
- [10] C.M. Mynhardt and M. Schurch, Paired domination in prisms of graphs, Discuss. Math. Graph Theory 31 (2011) 5-23, doi: 10.7151/dmgt.1526. Zbl1238.05201