Displaying similar documents to “Thin and fat sets for doubling measures in metric spaces”

John-Nirenberg lemmas for a doubling measure

Daniel Aalto, Lauri Berkovits, Outi Elina Kansanen, Hong Yue (2011)

Studia Mathematica

Similarity:

We study, in the context of doubling metric measure spaces, a class of BMO type functions defined by John and Nirenberg. In particular, we present a new version of the Calderón-Zygmund decomposition in metric spaces and use it to prove the corresponding John-Nirenberg inequality.

Some properties of the Hausdorff distance in metric spaces.

Jozef Banas, Antonio Martinón (1990)

Extracta Mathematicae

Similarity:

Some properties of the Hausdorff distance in complete metric spaces are discussed. Results obtained in this paper explain ideas used in the theory of measures of noncompactness.

Some remarks about metric spaces, spherical mappings, functions and their derivatives.

Stephen Semmes (1996)

Publicacions Matemàtiques

Similarity:

If p ∈ R, then we have the radial projection map from R {p} onto a sphere. Sometimes one can construct similar mappings on metric spaces even when the space is nontrivially different from Euclidean space, so that the existence of such a mapping becomes a sign of approximately Euclidean geometry. The existence of such spherical mappings can be used to derive estimates for the values of a function in terms of its gradient, which can then be used to derive Sobolev inequalities, etc. In...

Effect of choice of dissimilarity measure on classification efficiency with nearest neighbor method

Tomasz Górecki (2005)

Discussiones Mathematicae Probability and Statistics

Similarity:

In this paper we will precisely analyze the nearest neighbor method for different dissimilarity measures, classical and weighed, for which methods of distinguishing were worked out. We will propose looking for weights in the space of discriminant coordinates. Experimental results based on a number of real data sets are presented and analyzed to illustrate the benefits of the proposed methods. As classical dissimilarity measures we will use the Euclidean metric, Manhattan and post office...

An area formula in metric spaces

Valentino Magnani (2011)

Colloquium Mathematicae

Similarity:

We present an area formula for continuous mappings between metric spaces, under minimal regularity assumptions. In particular, we do not require any notion of differentiability. This is a consequence of a measure-theoretic notion of Jacobian, defined as the density of a suitable "pull-back measure". Finally, we give some applications and examples.

Infinitesimal Structure of Differentiability Spaces, and Metric Differentiation

Jeff Cheeger, Bruce Kleiner, Andrea Schioppa (2016)

Analysis and Geometry in Metric Spaces

Similarity:

We prove metric differentiation for differentiability spaces in the sense of Cheeger [10, 14, 27]. As corollarieswe give a new proof of one of the main results of [14], a proof that the Lip-lip constant of any Lip-lip space in the sense of Keith [27] is equal to 1, and new nonembeddability results.