Displaying similar documents to “Discrepancy and integration in function spaces with dominating mixed smoothness”

Mixed norms and Sobolev type inequalities

V. I. Kolyada (2006)

Banach Center Publications

Similarity:

We study mixed norm spaces that arise in connection with embeddings of Sobolev and Besov spaces. We prove Sobolev type inequalities in terms of these mixed norms. Applying these results, we obtain optimal constants in embedding theorems for anisotropic Besov spaces. This gives an extension of the estimate proved by Bourgain, Brezis and Mironescu for isotropic Besov spaces.

Copula-based grouped risk aggregation under mixed operation

Quan Zhou, Zhenlong Chen, Ruixing Ming (2016)

Applications of Mathematics

Similarity:

This paper deals with the problem of risk measurement under mixed operation. For this purpose, we divide the basic risks into several groups based on the actual situation. First, we calculate the bounds for the subsum of every group of basic risks, then we obtain the bounds for the total sum of all the basic risks. For the dependency relationships between the basic risks in every group and all of the subsums, we give different copulas to describe them. The bounds for the aggregated risk...