The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Fredholm properties of elliptic operators on ℝⁿ”

Sharp spectral asymptotics and Weyl formula for elliptic operators with Non-smooth Coefficients-Part 2

Lech Zielinski (2002)

Colloquium Mathematicae

Similarity:

We describe the asymptotic distribution of eigenvalues of self-adjoint elliptic differential operators, assuming that the first-order derivatives of the coefficients are Lipschitz continuous. We consider the asymptotic formula of Hörmander's type for the spectral function of pseudodifferential operators obtained via a regularization procedure of non-smooth coefficients.

Two remarks about spectral asymptotics of pseudodifferential operators

Wojciech Czaja, Ziemowit Rzeszotnik (1999)

Colloquium Mathematicae

Similarity:

In this paper we show an asymptotic formula for the number of eigenvalues of a pseudodifferential operator. As a corollary we obtain a generalization of the result by Shubin and Tulovskiĭ about the Weyl asymptotic formula. We also consider a version of the Weyl formula for the quasi-classical asymptotics.

Solvability conditions for elliptic problems with non-Fredholm operators

V. Volpert, B. Kaźmierczak, M. Massot, Z. Peradzyński (2002)

Applicationes Mathematicae

Similarity:

The paper is devoted to solvability conditions for linear elliptic problems with non-Fredholm operators. We show that the operator becomes normally solvable with a finite-dimensional kernel on properly chosen subspaces. In the particular case of a scalar equation we obtain necessary and sufficient solvability conditions. These results are used to apply the implicit function theorem for a nonlinear elliptic problem; we demonstrate the persistence of travelling wave solutions to spatially...

Semiclassical distribution of eigenvalues for elliptic operators with Hölder continuous coefficients, part i: non-critical case

Lech Zieliński (2004)

Colloquium Mathematicae

Similarity:

We consider a version of the Weyl formula describing the asymptotic behaviour of the counting function of eigenvalues in the semiclassical approximation for self-adjoint elliptic differential operators under weak regularity hypotheses. Our aim is to treat Hölder continuous coefficients and to investigate the case of critical energy values as well.