Elliptic differential operators on noncompact manifolds

Robert B. Lockhart; Robert C. Mc Owen

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)

  • Volume: 12, Issue: 3, page 409-447
  • ISSN: 0391-173X

How to cite

top

Lockhart, Robert B., and Mc Owen, Robert C.. "Elliptic differential operators on noncompact manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.3 (1985): 409-447. <http://eudml.org/doc/83962>.

@article{Lockhart1985,
author = {Lockhart, Robert B., Mc Owen, Robert C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {elliptic differential operators; noncompact manifolds; weighted Sobolev spaces; global analysis},
language = {eng},
number = {3},
pages = {409-447},
publisher = {Scuola normale superiore},
title = {Elliptic differential operators on noncompact manifolds},
url = {http://eudml.org/doc/83962},
volume = {12},
year = {1985},
}

TY - JOUR
AU - Lockhart, Robert B.
AU - Mc Owen, Robert C.
TI - Elliptic differential operators on noncompact manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 3
SP - 409
EP - 447
LA - eng
KW - elliptic differential operators; noncompact manifolds; weighted Sobolev spaces; global analysis
UR - http://eudml.org/doc/83962
ER -

References

top
  1. [1] S. Agmon - A. Douglis - L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations with general boundary conditions II, Comm. Pure Appl. Math., 17 (1964), pp. 35-92. Zbl0123.28706MR162050
  2. [2] S. Agmon - L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math., 16 (1963), pp. 121-239. Zbl0117.10001MR155203
  3. [3] M.S. Agranovi - M.I. Vi, Elliptic boundary value problems depending on a parameter, Dokl. Akad. Nauk SSSR, 149 (1963), pp. 223-226 = Soviet Math. Dokl., 4 (1963), pp. 325-329. Zbl0145.14701MR146529
  4. [4] R. Beals, A general calculus of pseudo differential operators, Duke Math. J., 42 (1975), pp. 1-42. Zbl0343.35078MR367730
  5. [5] M. Cantor, Some problems of global analysis on asymptotically simple manifolds, Compositio Math., 38 (1979), pp. 3-35. Zbl0402.58004MR523260
  6. [6] J. Cheeger, On the spectral geometry of spaces with cone-like singularities, Proc. Nat. Acad. Sci., 76 (1979), pp. 2103-2106. Zbl0411.58003MR530173
  7. [7] J. Cheeger - M. Goresky - R. Macpherson, L2-cohomology and intersection homology of singular algebraic varieties, Seminar on Differential Geometry (S. T. Yau ed.), Princeton Univ. Press, 1982, Princeton, N. J. Zbl0503.14008MR645745
  8. [8] Y. Choquet-Bruhat - D. Christodoulou, Elliptic systems in Hs,δ spaces on manifolds which are Euclidean at infinity, Acta Math., 146 (1981), pp. 129-150. Zbl0484.58028
  9. [9] H.O. Cordes - E. Herman, Gel'fand theory of pseudo-dif f erential operators, Amer. J. Math., 90 (1968), pp. 681-717. Zbl0169.47105MR454743
  10. [10] A. Douglis - L. Nirenberg, Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., 8 (1955), pp. 503-538. Zbl0066.08002MR75417
  11. [11] L. Hörmander, Pseudo-differential operators and nonelliptic boundary problems, Ann. of Math., 83 (1966), pp. 129-209. Zbl0132.07402MR233064
  12. [12] R. Illner, Algebras of pseudo-differential operators in Lp(Rn), Comm. Partial Diff. Eq., 2 (1977), pp. 359-393. Zbl0352.47021MR442758
  13. [13] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1966, New York. Zbl0148.12601MR203473
  14. [14] V.A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., 16 (1967). Zbl0194.13405MR226187
  15. [15] H. Kumano-Go, Oscillatory integrals of symbols of pseudo-dif f erential operators on Rn, and operators of Fredholm type, Proc. Japan Acad., 49 (1973), pp. 397-402. Zbl0272.47032MR355693
  16. [16] R. Lockhart, Fredholm properties of a class of elliptic operators on noncompact manifolds, Duke Math. J., 48 (1981), pp. 289-312. Zbl0486.35027MR610188
  17. [17] R. Lockhart - R. McOwen, On elliptic systems in Rn, Acta Math., 150 (1983), pp. 125-135. Zbl0517.35031MR697610
  18. [17a] R. Lockhart - R. McOwen, Correction for on elliptic systems in Rn, Acta Math. 153 (1984), pp. 303-304. Zbl0569.35027MR766267
  19. [18] V.G. Maz'ja - B.A. Plamenevski, Estimates in Lp and Hölder classes and the Miranda-Agmon .Maximum principle for solutions of elliptic boundary problems in domains with singular points on the boundary (in Russian), Math. Nachr., 81 (1978), pp. 25-82. Zbl0371.35018MR492821
  20. [19] R. McOwen, Behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math., 32 (1979), pp. 783-795. Zbl0426.35029MR539158
  21. [20] R. McOwen, Boundary value problems for the Laplacian in an exterior domain, Comm. Partial Diff. Eq., 6 (1981), pp. 783-798. Zbl0473.35036MR623645
  22. [21] R. McOwen, Fredholm theory of partial differential equations on complete Riemannian manifolds, Pacific J. Math., 87 (1980), pp. 169-185. Zbl0457.35084MR590874
  23. [22] R. McOwen, On elliptic operators in Rn, Comm. Partial Diff. Eq., 5 (1980), pp. 913-933. Zbl0448.35042MR584101
  24. [23] R. Melrose - G. Mendoza, Elliptic operators of totally characteristic type, preprint. 
  25. [24] L. Nirenberg - H.F. Walker, The nullspaces of elliptic partial differential operators in Rn, J. Math. Anal. Appl., 42 (1973), pp. 271-301. Zbl0272.35029MR320821
  26. [25] V S. RABINOVIč, Pseudo- differential operators on a class of noncompact manifolds, Math. USSR-Sb., 18 (1972), pp. 45-59. Zbl0257.58009
  27. [26] G. De Rham, Varieties Differentiables, 3rd ed., Hermann, Paris, 1973. Zbl0284.58001
  28. [27] R. Seeley, Singular integrals and boundary value problems, Amer. J. Math., 88 (1966), pp. 781-809. Zbl0178.17601MR209915
  29. [28] L.A. Bagirov - V.A. Kondrat'ev, Elliptic equations in Rn, Differential Equations, 11 (1975), pp. 375-379. Zbl0331.35021MR377270

Citations in EuDML Documents

top
  1. Olivier Biquard, Fibrés paraboliques stables et connexions singulières plates
  2. Marc Herzlich, Compactification conforme des variétés asymptotiquement plates
  3. Sami Baraket, Makkia Dammak, Taieb Ouni, Frank Pacard, Singular limits for a 4-dimensional semilinear elliptic problem with exponential nonlinearity
  4. Jean-Claude Sikorav, Homologie associée à une fonctionnelle
  5. Marc Herzlich, L'inégalité de Penrose
  6. Olivier Biquard, Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse)

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.