Elliptic differential operators on noncompact manifolds
Robert B. Lockhart; Robert C. Mc Owen
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)
- Volume: 12, Issue: 3, page 409-447
- ISSN: 0391-173X
Access Full Article
topHow to cite
topLockhart, Robert B., and Mc Owen, Robert C.. "Elliptic differential operators on noncompact manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.3 (1985): 409-447. <http://eudml.org/doc/83962>.
@article{Lockhart1985,
author = {Lockhart, Robert B., Mc Owen, Robert C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {elliptic differential operators; noncompact manifolds; weighted Sobolev spaces; global analysis},
language = {eng},
number = {3},
pages = {409-447},
publisher = {Scuola normale superiore},
title = {Elliptic differential operators on noncompact manifolds},
url = {http://eudml.org/doc/83962},
volume = {12},
year = {1985},
}
TY - JOUR
AU - Lockhart, Robert B.
AU - Mc Owen, Robert C.
TI - Elliptic differential operators on noncompact manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 3
SP - 409
EP - 447
LA - eng
KW - elliptic differential operators; noncompact manifolds; weighted Sobolev spaces; global analysis
UR - http://eudml.org/doc/83962
ER -
References
top- [1] S. Agmon - A. Douglis - L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations with general boundary conditions II, Comm. Pure Appl. Math., 17 (1964), pp. 35-92. Zbl0123.28706MR162050
- [2] S. Agmon - L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math., 16 (1963), pp. 121-239. Zbl0117.10001MR155203
- [3] M.S. Agranovi - M.I. Vi, Elliptic boundary value problems depending on a parameter, Dokl. Akad. Nauk SSSR, 149 (1963), pp. 223-226 = Soviet Math. Dokl., 4 (1963), pp. 325-329. Zbl0145.14701MR146529
- [4] R. Beals, A general calculus of pseudo differential operators, Duke Math. J., 42 (1975), pp. 1-42. Zbl0343.35078MR367730
- [5] M. Cantor, Some problems of global analysis on asymptotically simple manifolds, Compositio Math., 38 (1979), pp. 3-35. Zbl0402.58004MR523260
- [6] J. Cheeger, On the spectral geometry of spaces with cone-like singularities, Proc. Nat. Acad. Sci., 76 (1979), pp. 2103-2106. Zbl0411.58003MR530173
- [7] J. Cheeger - M. Goresky - R. Macpherson, L2-cohomology and intersection homology of singular algebraic varieties, Seminar on Differential Geometry (S. T. Yau ed.), Princeton Univ. Press, 1982, Princeton, N. J. Zbl0503.14008MR645745
- [8] Y. Choquet-Bruhat - D. Christodoulou, Elliptic systems in Hs,δ spaces on manifolds which are Euclidean at infinity, Acta Math., 146 (1981), pp. 129-150. Zbl0484.58028
- [9] H.O. Cordes - E. Herman, Gel'fand theory of pseudo-dif f erential operators, Amer. J. Math., 90 (1968), pp. 681-717. Zbl0169.47105MR454743
- [10] A. Douglis - L. Nirenberg, Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., 8 (1955), pp. 503-538. Zbl0066.08002MR75417
- [11] L. Hörmander, Pseudo-differential operators and nonelliptic boundary problems, Ann. of Math., 83 (1966), pp. 129-209. Zbl0132.07402MR233064
- [12] R. Illner, Algebras of pseudo-differential operators in Lp(Rn), Comm. Partial Diff. Eq., 2 (1977), pp. 359-393. Zbl0352.47021MR442758
- [13] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1966, New York. Zbl0148.12601MR203473
- [14] V.A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., 16 (1967). Zbl0194.13405MR226187
- [15] H. Kumano-Go, Oscillatory integrals of symbols of pseudo-dif f erential operators on Rn, and operators of Fredholm type, Proc. Japan Acad., 49 (1973), pp. 397-402. Zbl0272.47032MR355693
- [16] R. Lockhart, Fredholm properties of a class of elliptic operators on noncompact manifolds, Duke Math. J., 48 (1981), pp. 289-312. Zbl0486.35027MR610188
- [17] R. Lockhart - R. McOwen, On elliptic systems in Rn, Acta Math., 150 (1983), pp. 125-135. Zbl0517.35031MR697610
- [17a] R. Lockhart - R. McOwen, Correction for on elliptic systems in Rn, Acta Math. 153 (1984), pp. 303-304. Zbl0569.35027MR766267
- [18] V.G. Maz'ja - B.A. Plamenevski, Estimates in Lp and Hölder classes and the Miranda-Agmon .Maximum principle for solutions of elliptic boundary problems in domains with singular points on the boundary (in Russian), Math. Nachr., 81 (1978), pp. 25-82. Zbl0371.35018MR492821
- [19] R. McOwen, Behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math., 32 (1979), pp. 783-795. Zbl0426.35029MR539158
- [20] R. McOwen, Boundary value problems for the Laplacian in an exterior domain, Comm. Partial Diff. Eq., 6 (1981), pp. 783-798. Zbl0473.35036MR623645
- [21] R. McOwen, Fredholm theory of partial differential equations on complete Riemannian manifolds, Pacific J. Math., 87 (1980), pp. 169-185. Zbl0457.35084MR590874
- [22] R. McOwen, On elliptic operators in Rn, Comm. Partial Diff. Eq., 5 (1980), pp. 913-933. Zbl0448.35042MR584101
- [23] R. Melrose - G. Mendoza, Elliptic operators of totally characteristic type, preprint.
- [24] L. Nirenberg - H.F. Walker, The nullspaces of elliptic partial differential operators in Rn, J. Math. Anal. Appl., 42 (1973), pp. 271-301. Zbl0272.35029MR320821
- [25] V S. RABINOVIč, Pseudo- differential operators on a class of noncompact manifolds, Math. USSR-Sb., 18 (1972), pp. 45-59. Zbl0257.58009
- [26] G. De Rham, Varieties Differentiables, 3rd ed., Hermann, Paris, 1973. Zbl0284.58001
- [27] R. Seeley, Singular integrals and boundary value problems, Amer. J. Math., 88 (1966), pp. 781-809. Zbl0178.17601MR209915
- [28] L.A. Bagirov - V.A. Kondrat'ev, Elliptic equations in Rn, Differential Equations, 11 (1975), pp. 375-379. Zbl0331.35021MR377270
Citations in EuDML Documents
top- Olivier Biquard, Fibrés paraboliques stables et connexions singulières plates
- Marc Herzlich, Compactification conforme des variétés asymptotiquement plates
- Sami Baraket, Makkia Dammak, Taieb Ouni, Frank Pacard, Singular limits for a 4-dimensional semilinear elliptic problem with exponential nonlinearity
- Jean-Claude Sikorav, Homologie associée à une fonctionnelle
- Marc Herzlich, L'inégalité de Penrose
- Olivier Biquard, Fibrés de Higgs et connexions intégrables : le cas logarithmique (diviseur lisse)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.