Displaying similar documents to “On the sumset of the primes and a linear recurrence”

Nonaliquots and Robbins numbers

William D. Banks, Florian Luca (2005)

Colloquium Mathematicae

Similarity:

Let φ(·) and σ(·) denote the Euler function and the sum of divisors function, respectively. We give a lower bound for the number of m ≤ x for which the equation m = σ(n) - n has no solution. We also show that the set of positive integers m not of the form (p-1)/2 - φ(p-1) for some prime number p has a positive lower asymptotic density.

Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields

Hans Roskam (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

Let S be a linear integer recurrent sequence of order k 3 , and define P S as the set of primes that divide at least one term of S . We give a heuristic approach to the problem whether P S has a natural density, and prove that part of our heuristics is correct. Under the assumption of a generalization of Artin’s primitive root conjecture, we find that P S has positive lower density for “generic” sequences S . Some numerical examples are included.