Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields

Hans Roskam

Journal de théorie des nombres de Bordeaux (2001)

  • Volume: 13, Issue: 1, page 303-314
  • ISSN: 1246-7405

Abstract

top
Let S be a linear integer recurrent sequence of order k 3 , and define P S as the set of primes that divide at least one term of S . We give a heuristic approach to the problem whether P S has a natural density, and prove that part of our heuristics is correct. Under the assumption of a generalization of Artin’s primitive root conjecture, we find that P S has positive lower density for “generic” sequences S . Some numerical examples are included.

How to cite

top

Roskam, Hans. "Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields." Journal de théorie des nombres de Bordeaux 13.1 (2001): 303-314. <http://eudml.org/doc/248711>.

@article{Roskam2001,
abstract = {Let $S$ be a linear integer recurrent sequence of order $k \ge 3$, and define $P_S$ as the set of primes that divide at least one term of $S$. We give a heuristic approach to the problem whether $P_S$ has a natural density, and prove that part of our heuristics is correct. Under the assumption of a generalization of Artin’s primitive root conjecture, we find that $P_S$ has positive lower density for “generic” sequences $S$. Some numerical examples are included.},
author = {Roskam, Hans},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {recurrence sequence; prime divisor; density; Artin's conjecture},
language = {eng},
number = {1},
pages = {303-314},
publisher = {Université Bordeaux I},
title = {Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields},
url = {http://eudml.org/doc/248711},
volume = {13},
year = {2001},
}

TY - JOUR
AU - Roskam, Hans
TI - Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 303
EP - 314
AB - Let $S$ be a linear integer recurrent sequence of order $k \ge 3$, and define $P_S$ as the set of primes that divide at least one term of $S$. We give a heuristic approach to the problem whether $P_S$ has a natural density, and prove that part of our heuristics is correct. Under the assumption of a generalization of Artin’s primitive root conjecture, we find that $P_S$ has positive lower density for “generic” sequences $S$. Some numerical examples are included.
LA - eng
KW - recurrence sequence; prime divisor; density; Artin's conjecture
UR - http://eudml.org/doc/248711
ER -

References

top
  1. [1] C. Ballot, Density of prime divisors of linear recurrent sequences. Mem. of the AMS551 (1995). Zbl0827.11006
  2. [2] H. Brown, H. Zassenhaus, Some empirical observations on primitive roots. J. Number Theory3 (971),306-309. Zbl0219.10003MR288072
  3. [3] R. Hartshorne, Algebraic geometry. Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
  4. [4] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganz-rationale Zahl a ≠ 0 von gerader bzw. ungerader Ordnung mod.p ist. Math. Ann.166 (1966), 19-23. Zbl0139.27501MR205975
  5. [5] C. Hooley, On Artin's conjecture. J. Reine Angew. Math.225 (1967), 209-220. Zbl0221.10048MR207630
  6. [6] J.C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3. Pacific J. Math.118 (1985), 449-461; Errata Ibid.162 (1994), 393-397. Zbl0569.10003MR789184
  7. [7] H.W. Lenstra, JR, On Artin's conjecture and Euclid's algorithm in global fields. Inv. Math.42 (1977), 201-224. Zbl0362.12012MR480413
  8. [8] S. Lang, A. Weil, Number of points of varieties in finite fields. Amer. J. Math.76 (1954), 819-827. Zbl0058.27202MR65218
  9. [9] P. Moree, P. Stevenhagen, Prime divisors of Lucas sequences. Acta Arith.82 (1997), 403-410. Zbl0913.11048MR1483692
  10. [10] G. Pólya, Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen. J. Reine Angew. Math.151 (1921), 99-100. JFM47.0276.02
  11. [11] H. Roskam, A Quadratic analogue of Artin's conjecture on primitive roots. J. Number Theory81 (2000), 93-109. Zbl1049.11125MR1743503
  12. [12] H. Roskam, Artin's Primitive Root Conjecture for Quadratic Fields. Accepted for publication in J. Théor. Nombres Bordeaux. Zbl1026.11086
  13. [13] P.J. Stephens, Prime divisors of second order linear recurrences. J. Number Theory8 (1976), 313-332. Zbl0334.10018MR417081
  14. [14] S.S. Wagstaff, Pseudoprimes and a generalization of Artin's conjecture. Acta Arith.41 (1982), 141-150. Zbl0496.10001MR674829
  15. [15] M. Ward, Prime divisors of second order recurring sequences. Duke Math. J.21 (1954), 607-614. Zbl0058.03701MR64073
  16. [16] M. Ward, The maximal prime divisors of linear recurrences. Can. J. Math.6 (1954), 455-462 Zbl0056.04106MR66408

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.