Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields
Journal de théorie des nombres de Bordeaux (2001)
- Volume: 13, Issue: 1, page 303-314
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topRoskam, Hans. "Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields." Journal de théorie des nombres de Bordeaux 13.1 (2001): 303-314. <http://eudml.org/doc/248711>.
@article{Roskam2001,
abstract = {Let $S$ be a linear integer recurrent sequence of order $k \ge 3$, and define $P_S$ as the set of primes that divide at least one term of $S$. We give a heuristic approach to the problem whether $P_S$ has a natural density, and prove that part of our heuristics is correct. Under the assumption of a generalization of Artin’s primitive root conjecture, we find that $P_S$ has positive lower density for “generic” sequences $S$. Some numerical examples are included.},
author = {Roskam, Hans},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {recurrence sequence; prime divisor; density; Artin's conjecture},
language = {eng},
number = {1},
pages = {303-314},
publisher = {Université Bordeaux I},
title = {Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields},
url = {http://eudml.org/doc/248711},
volume = {13},
year = {2001},
}
TY - JOUR
AU - Roskam, Hans
TI - Prime divisors of linear recurrences and Artin's primitive root conjecture for number fields
JO - Journal de théorie des nombres de Bordeaux
PY - 2001
PB - Université Bordeaux I
VL - 13
IS - 1
SP - 303
EP - 314
AB - Let $S$ be a linear integer recurrent sequence of order $k \ge 3$, and define $P_S$ as the set of primes that divide at least one term of $S$. We give a heuristic approach to the problem whether $P_S$ has a natural density, and prove that part of our heuristics is correct. Under the assumption of a generalization of Artin’s primitive root conjecture, we find that $P_S$ has positive lower density for “generic” sequences $S$. Some numerical examples are included.
LA - eng
KW - recurrence sequence; prime divisor; density; Artin's conjecture
UR - http://eudml.org/doc/248711
ER -
References
top- [1] C. Ballot, Density of prime divisors of linear recurrent sequences. Mem. of the AMS551 (1995). Zbl0827.11006
- [2] H. Brown, H. Zassenhaus, Some empirical observations on primitive roots. J. Number Theory3 (971),306-309. Zbl0219.10003MR288072
- [3] R. Hartshorne, Algebraic geometry. Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
- [4] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganz-rationale Zahl a ≠ 0 von gerader bzw. ungerader Ordnung mod.p ist. Math. Ann.166 (1966), 19-23. Zbl0139.27501MR205975
- [5] C. Hooley, On Artin's conjecture. J. Reine Angew. Math.225 (1967), 209-220. Zbl0221.10048MR207630
- [6] J.C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3. Pacific J. Math.118 (1985), 449-461; Errata Ibid.162 (1994), 393-397. Zbl0569.10003MR789184
- [7] H.W. Lenstra, JR, On Artin's conjecture and Euclid's algorithm in global fields. Inv. Math.42 (1977), 201-224. Zbl0362.12012MR480413
- [8] S. Lang, A. Weil, Number of points of varieties in finite fields. Amer. J. Math.76 (1954), 819-827. Zbl0058.27202MR65218
- [9] P. Moree, P. Stevenhagen, Prime divisors of Lucas sequences. Acta Arith.82 (1997), 403-410. Zbl0913.11048MR1483692
- [10] G. Pólya, Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen. J. Reine Angew. Math.151 (1921), 99-100. JFM47.0276.02
- [11] H. Roskam, A Quadratic analogue of Artin's conjecture on primitive roots. J. Number Theory81 (2000), 93-109. Zbl1049.11125MR1743503
- [12] H. Roskam, Artin's Primitive Root Conjecture for Quadratic Fields. Accepted for publication in J. Théor. Nombres Bordeaux. Zbl1026.11086
- [13] P.J. Stephens, Prime divisors of second order linear recurrences. J. Number Theory8 (1976), 313-332. Zbl0334.10018MR417081
- [14] S.S. Wagstaff, Pseudoprimes and a generalization of Artin's conjecture. Acta Arith.41 (1982), 141-150. Zbl0496.10001MR674829
- [15] M. Ward, Prime divisors of second order recurring sequences. Duke Math. J.21 (1954), 607-614. Zbl0058.03701MR64073
- [16] M. Ward, The maximal prime divisors of linear recurrences. Can. J. Math.6 (1954), 455-462 Zbl0056.04106MR66408
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.