Displaying similar documents to “Note on blow-up of solutions for a porous medium equation with convection and boundary flux”

Critical points for reaction-diffusion system with one and two unilateral conditions

Jan Eisner, Jan Žilavý (2023)

Archivum Mathematicum

Similarity:

We show the location of so called critical points, i.e., couples of diffusion coefficients for which a non-trivial solution of a linear reaction-diffusion system of activator-inhibitor type on an interval with Neumann boundary conditions and with additional non-linear unilateral condition at one or two points on the boundary and/or in the interior exists. Simultaneously, we show the profile of such solutions.

The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation

Juan Luis Vázquez (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We review the main mathematical questions posed in blow-up problems for reaction-diffusion equations and discuss results of the author and collaborators on the subjects of continuation of solutions after blow-up, existence of transient blow-up solutions (so-called peaking solutions) and avalanche formation as a mechanism of complete blow-up.

The nonlinear diffusion equation of the ideal barotropic gas through a porous medium

Huashui Zhan (2017)

Open Mathematics

Similarity:

The nonlinear diffusion equation of the ideal barotropic gas through a porous medium is considered. If the diffusion coefficient is degenerate on the boundary, then the solutions may be controlled by the initial value completely, the well-posedness of the solutions may be obtained without any boundary condition.