The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A Note on the Rational Cuspidal Curves”

Rational Bézier curves with infinitely many integral points

Petroula Dospra (2023)

Archivum Mathematicum

Similarity:

In this paper we consider rational Bézier curves with control points having rational coordinates and rational weights, and we give necessary and sufficient conditions for such a curve to have infinitely many points with integer coefficients. Furthermore, we give algorithms for the construction of these curves and the computation of theirs points with integer coefficients.

Trivial points on towers of curves

Xavier Xarles (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In order to study the behavior of the points in a tower of curves, we introduce and study trivial points on towers of curves, and we discuss their finiteness over number fields. We relate the problem of proving that the only rational points are the trivial ones at some level of the tower, to the unboundeness of the gonality of the curves in the tower, which we show under some hypothesis.

Counting rational points near planar curves

Ayla Gafni (2014)

Acta Arithmetica

Similarity:

We find an asymptotic formula for the number of rational points near planar curves. More precisely, if f:ℝ → ℝ is a sufficiently smooth function defined on the interval [η,ξ], then the number of rational points with denominator no larger than Q that lie within a δ-neighborhood of the graph of f is shown to be asymptotically equivalent to (ξ-η)δQ².

The arithmetic of curves defined by iteration

Wade Hindes (2015)

Acta Arithmetica

Similarity:

We show how the size of the Galois groups of iterates of a quadratic polynomial f can be parametrized by certain rational points on the curves Cₙ: y² = fⁿ(x) and their quadratic twists (here fⁿ denotes the nth iterate of f). To that end, we study the arithmetic of such curves over global and finite fields, translating key problems in the arithmetic of polynomial iteration into a geometric framework. This point of view has several dynamical applications. For instance, we establish a maximality...

Factorial Fermat curves over the rational numbers

Peter Malcolmson, Frank Okoh, Vasuvedan Srinivas (2016)

Colloquium Mathematicae

Similarity:

A polynomial f in the set {Xⁿ+Yⁿ, Xⁿ +Yⁿ-Zⁿ, Xⁿ +Yⁿ+Zⁿ, Xⁿ +Yⁿ-1} lends itself to an elementary proof of the following theorem: if the coordinate ring over ℚ of f is factorial, then n is one or two. We give a list of problems suggested by this result.