Displaying similar documents to “A problem with almost everywhere equality”

Semicontinuous integrands as jointly measurable maps

Oriol Carbonell-Nicolau (2014)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Suppose that ( X , 𝒜 ) is a measurable space and Y is a metrizable, Souslin space. Let 𝒜 u denote the universal completion of 𝒜 . For x X , let f ̲ ( x , · ) be the lower semicontinuous hull of f ( x , · ) . If f : X × Y ¯ is ( 𝒜 u ( Y ) , ( ¯ ) ) -measurable, then f ̲ is ( 𝒜 u ( Y ) , ( ¯ ) ) -measurable.

Parametrization of Riemann-measurable selections for multifunctions of two variables with application to differential inclusions

Giovanni Anello, Paolo Cubiotti (2004)

Annales Polonici Mathematici

Similarity:

We consider a multifunction F : T × X 2 E , where T, X and E are separable metric spaces, with E complete. Assuming that F is jointly measurable in the product and a.e. lower semicontinuous in the second variable, we establish the existence of a selection for F which is measurable with respect to the first variable and a.e. continuous with respect to the second one. Our result is in the spirit of [11], where multifunctions of only one variable are considered.

The Christensen measurable solutions of a generalization of the Gołąb-Schinzel functional equation

Janusz Brzdęk (1996)

Annales Polonici Mathematici

Similarity:

Let K denote the set of all reals or complex numbers. Let X be a topological linear separable F-space over K. The following generalization of the result of C. G. Popa [16] is proved. Theorem. Let n be a positive integer. If a Christensen measurable function f: X → K satisfies the functional equation f ( x + f ( x ) n y ) = f ( x ) f ( y ) , then it is continuous or the set x ∈ X : f(x) ≠ 0 is a Christensen zero set.

Measurable envelopes, Hausdorff measures and Sierpiński sets

Márton Elekes (2003)

Colloquium Mathematicae

Similarity:

We show that the existence of measurable envelopes of all subsets of ℝⁿ with respect to the d-dimensional Hausdorff measure (0 < d < n) is independent of ZFC. We also investigate the consistency of the existence of d -measurable Sierpiński sets.

Closed convex hull of set of measurable functions, Riemann-measurable functions and measurability of translations

Michel Talagrand (1982)

Annales de l'institut Fourier

Similarity:

Let G be a locally compact group. Let L t be the left translation in L ( G ) , given by L t f ( x ) = f ( t x ) . We characterize (undre a mild set-theoretical hypothesis) the functions f L ( G ) such that the map t L t f from G into L ( G ) is scalarly measurable (i.e. for φ L ( G ) * , t φ ( L t f ) is measurable). We show that it is the case when t θ ( L f t ) is measurable for each character θ , and if G is compact, if and only if f is Riemann-measurable. We show that t L t f is Borel measurable if and only if f is left uniformly continuous. Some of the measure-theoretic...

Fourier analysis, linear programming, and densities of distance avoiding sets in n

Fernando Mário de Oliveira Filho, Frank Vallentin (2010)

Journal of the European Mathematical Society

Similarity:

We derive new upper bounds for the densities of measurable sets in n which avoid a finite set of prescribed distances. The new bounds come from the solution of a linear programming problem. We apply this method to obtain new upper bounds for measurable sets which avoid the unit distance in dimensions 2 , , 24 . This gives new lower bounds for the measurable chromatic number in dimensions 3 , , 24 . We apply it to get a short proof of a variant of a recent result of Bukh which in turn generalizes theorems...

On a result of K. P. Hart about non-existence of measurable solutions to the discrete expectation maximization problem

Vladimir G. Pestov (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It was shown that there is a statistical learning problem – a version of the expectation maximization (EMX) problem – whose consistency in a domain of cardinality continuum under the family of purely atomic probability measures and with finite hypotheses is equivalent to a version of the continuum hypothesis, and thus independent of ZFC. K. P. Hart had subsequently proved that no solution to the EMX problem can be Borel measurable with regard to an uncountable standard Borel structure...

Algebraic genericity of strict-order integrability

Luis Bernal-González (2010)

Studia Mathematica

Similarity:

We provide sharp conditions on a measure μ defined on a measurable space X guaranteeing that the family of functions in the Lebesgue space L p ( μ , X ) (p ≥ 1) which are not q-integrable for any q > p (or any q < p) contains large subspaces of L p ( μ , X ) (without zero). This improves recent results due to Aron, García, Muñoz, Palmberg, Pérez, Puglisi and Seoane. It is also shown that many non-q-integrable functions can even be obtained on any nonempty open subset of X, assuming that X is a topological...

Completely continuous multipliers from L 1 ( G ) into L ( G )

G. Crombez, Willy Govaerts (1984)

Annales de l'institut Fourier

Similarity:

For a locally compact Hausdorff group G we investigate what functions in L ( G ) give rise to completely continuous multipliers T g from L 1 ( G ) into L ( G ) . In the case of a metrizable group we obtain a complete description of such functions. In particular, for G compact all g in L ( G ) induce completely continuous T g .

Normal integrands and related classes of functions

Anna Kucia, Andrzej Nowak (1995)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let D T × X , where T is a measurable space, and X a topological space. We study inclusions between three classes of extended real-valued functions on D which are upper semicontinuous in x and satisfy some measurability conditions.