Displaying similar documents to “A class of singular fourth-order boundary value problems with nonhomogeneous nonlinearity”

Positive solutions to a singular fourth-order two-point boundary value problem

Qingliu Yao (2011)

Annales Polonici Mathematici

Similarity:

This paper studies the existence of multiple positive solutions to a nonlinear fourth-order two-point boundary value problem, where the nonlinear term may be singular with respect to both time and space variables. In order to estimate the growth of the nonlinear term, we introduce new control functions. By applying the Hammerstein integral equation and the Guo-Krasnosel'skii fixed point theorem of cone expansion-compression type, several local existence theorems are proved.

Multiple positive solutions to singular boundary value problems for superlinear second order FDEs

Daqing Jiang (2000)

Annales Polonici Mathematici

Similarity:

We study the existence of positive solutions to the singular boundary value problem for a second-order FDE ⎧ u'' + q(t) f(t,u(w(t))) = 0, for almost all 0 < t < 1, ⎨ u(t) = ξ(t), a ≤ t ≤ 0, ⎩ u(t) = η(t), 1 ≤ t ≤ b, where q(t) may be singular at t = 0 and t = 1, f(t,u) may be superlinear at u = ∞ and singular at u = 0.

Positive solutions to nonlinear singular second order boundary value problems

Gabriele Bonanno (1996)

Annales Polonici Mathematici

Similarity:

Existence theorems of positive solutions to a class of singular second order boundary value problems of the form y'' + f(x,y,y') = 0, 0 < x < 1, are established. It is not required that the function (x,y,z) → f(x,y,z) be nonincreasing in y and/or z, as is generally assumed. However, when (x,y,z) → f(x,y,z) is nonincreasing in y and z, some of O'Regan's results [J. Differential Equations 84 (1990), 228-251] are improved. The proofs of the main theorems are based on a fixed point...

Positive solutions and eigenvalue intervals of a singular third-order boundary value problem

Qingliu Yao (2011)

Annales Polonici Mathematici

Similarity:

This paper studies positive solutions and eigenvalue intervals of a nonlinear third-order two-point boundary value problem. The nonlinear term is allowed to be singular with respect to both the time and space variables. By constructing a proper cone and applying the Guo-Krasnosel'skii fixed point theorem, the eigenvalue intervals for which there exist one, two, three or infinitely many positive solutions are obtained.

Boundary value problems and singular integral equations on Banach function spaces

E. M. Rojas

Similarity:

We study the solvability and Fredholmness of binomial boundary value problems for analytic functions represented by integrals of Cauchy type with density on abstract nonstandard Banach function spaces, assuming continuous, piecewise continuous and essentially bounded factorizable functions as coefficients. The representation of the solutions of those problems allows us to describe the explicit form of the solutions of the associated singular integral equations in each case. The solvability...

On complete solutions and complete singular solutions of second order ordinary differential equations

Masatomo Takahashi (2007)

Colloquium Mathematicae

Similarity:

A complete solution of an implicit second order ordinary differential equation is defined by an immersive two-parameter family of geometric solutions on the equation hypersurface. We show that a completely integrable equation is either of Clairaut type or of first order type. Moreover, we define a complete singular solution, an immersive one-parameter family of singular solutions on the contact singular set. We give conditions for existence of a complete solution and a complete singular...