Displaying similar documents to “Infinite games and chain conditions”

Lindelöf indestructibility, topological games and selection principles

Marion Scheepers, Franklin D. Tall (2010)

Fundamenta Mathematicae

Similarity:

Arhangel’skii proved that if a first countable Hausdorff space is Lindelöf, then its cardinality is at most 2 . Such a clean upper bound for Lindelöf spaces in the larger class of spaces whose points are G δ has been more elusive. In this paper we continue the agenda started by the second author, [Topology Appl. 63 (1995)], of considering the cardinality problem for spaces satisfying stronger versions of the Lindelöf property. Infinite games and selection principles, especially the Rothberger...

Topological games and product spaces

Salvador García-Ferreira, R. A. González-Silva, Artur Hideyuki Tomita (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper, we deal with the product of spaces which are either 𝒢 -spaces or 𝒢 p -spaces, for some p ω * . These spaces are defined in terms of a two-person infinite game over a topological space. All countably compact spaces are 𝒢 -spaces, and every 𝒢 p -space is a 𝒢 -space, for every p ω * . We prove that if { X μ : μ < ω 1 } is a set of spaces whose product X = μ < ω 1 X μ is a 𝒢 -space, then there is A [ ω 1 ] ω such that X μ is countably compact for every μ ω 1 A . As a consequence, X ω 1 is a 𝒢 -space iff X ω 1 is countably compact, and if X 2 𝔠 is a 𝒢 -space,...

More on the Ehrenfeucht-Fraisse game of length ω₁

Tapani Hyttinen, Saharon Shelah, Jouko Vaananen (2002)

Fundamenta Mathematicae

Similarity:

By results of [9] there are models and for which the Ehrenfeucht-Fraïssé game of length ω₁, E F G ω ( , ) , is non-determined, but it is consistent relative to the consistency of a measurable cardinal that no such models have cardinality ≤ ℵ₂. We now improve the work of [9] in two ways. Firstly, we prove that the consistency strength of the statement “CH and E F G ω ( , ) is determined for all models and of cardinality ℵ₂” is that of a weakly compact cardinal. On the other hand, we show that if 2 < 2 , T is a countable...

Some new versions of an old game

Vladimir Vladimirovich Tkachuk (1995)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The old game is the point-open one discovered independently by F. Galvin [7] and R. Telgársky [17]. Recall that it is played on a topological space X as follows: at the n -th move the first player picks a point x n X and the second responds with choosing an open U n x n . The game stops after ω moves and the first player wins if { U n : n ω } = X . Otherwise the victory is ascribed to the second player. In this paper we introduce and study the games θ and Ω . In θ the moves are made exactly as in the point-open game,...

Applications of limited information strategies in Menger's game

Steven Clontz (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

As shown by Telgársky and Scheepers, winning strategies in the Menger game characterize σ -compactness amongst metrizable spaces. This is improved by showing that winning Markov strategies in the Menger game characterize σ -compactness amongst regular spaces, and that winning strategies may be improved to winning Markov strategies in second-countable spaces. An investigation of 2-Markov strategies introduces a new topological property between σ -compact and Menger spaces.

On the Variational Inequality and Tykhonov Well-Posedness in Game Theory

C. A. Pensavalle, G. Pieri (2010)

Bollettino dell'Unione Matematica Italiana

Similarity:

Consider a M-player game in strategic form G = ( X 1 , , X M , g 1 , , g M ) where the set X i is a closed interval of real numbers and the payoff function g i is concave and differentiable with respect to the variable x i X i , for any i = 1 , , M . The aim of this paper is to find appropriate conditions on the payoff functions under the well-posedness with respect to the related variational inequality is equivalent to the formulation of the Tykhonov well-posedness in a game context. The idea of the proof is to appeal to a third equivalence,...

Uncountable γ-sets under axiom C P A c u b e g a m e

Krzysztof Ciesielski, Andrés Millán, Janusz Pawlikowski (2003)

Fundamenta Mathematicae

Similarity:

We formulate a Covering Property Axiom C P A c u b e g a m e , which holds in the iterated perfect set model, and show that it implies the existence of uncountable strong γ-sets in ℝ (which are strongly meager) as well as uncountable γ-sets in ℝ which are not strongly meager. These sets must be of cardinality ω₁ < , since every γ-set is universally null, while C P A c u b e g a m e implies that every universally null has cardinality less than = ω₂. We also show that C P A c u b e g a m e implies the existence of a partition of ℝ into ω₁ null...

Some applications of the point-open subbase game

D. Guerrero Sánchez, Vladimir Vladimirovich Tkachuk (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a subbase 𝒮 of a space X , the game P O ( 𝒮 , X ) is defined for two players P and O who respectively pick, at the n -th move, a point x n X and a set U n 𝒮 such that x n U n . The game stops after the moves { x n , U n : n ø } have been made and the player P wins if n ø U n = X ; otherwise O is the winner. Since P O ( 𝒮 , X ) is an evident modification of the well-known point-open game P O ( X ) , the primary line of research is to describe the relationship between P O ( X ) and P O ( 𝒮 , X ) for a given subbase 𝒮 . It turns out that, for any subbase 𝒮 , the player P has a winning...

Applications of saddle-point determinants

Jan Hauke, Charles R. Johnson, Tadeusz Ostrowski (2015)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

For a given square matrix A M n ( ) and the vector e ( ) n of ones denote by (A,e) the matrix ⎡ A e ⎤ ⎣ e T 0 ⎦ This is often called the saddle point matrix and it plays a significant role in several branches of mathematics. Here we show some applications of it in: game theory and analysis. An application of specific saddle point matrices that are hollow, symmetric, and nonnegative is likewise shown in geometry as a generalization of Heron’s formula to give the volume of a general simplex, as well as...

Empirical approximation in Markov games under unbounded payoff: discounted and average criteria

Fernando Luque-Vásquez, J. Adolfo Minjárez-Sosa (2017)

Kybernetika

Similarity:

This work deals with a class of discrete-time zero-sum Markov games whose state process x t evolves according to the equation x t + 1 = F ( x t , a t , b t , ξ t ) , where a t and b t represent the actions of player 1 and 2, respectively, and ξ t is a sequence of independent and identically distributed random variables with unknown distribution θ . Assuming possibly unbounded payoff, and using the empirical distribution to estimate θ , we introduce approximation schemes for the value of the game as well as for optimal strategies considering...

Combinatorics of open covers (VII): Groupability

Ljubiša D. R. Kočinac, Marion Scheepers (2003)

Fundamenta Mathematicae

Similarity:

We use Ramseyan partition relations to characterize: ∙ the classical covering property of Hurewicz; ∙ the covering property of Gerlits and Nagy; ∙ the combinatorial cardinal numbers and add(ℳ ). Let X be a T 31 / 2 -space. In [9] we showed that C p ( X ) has countable strong fan tightness as well as the Reznichenko property if, and only if, all finite powers of X have the Gerlits-Nagy covering property. Now we show that the following are equivalent: 1. C p ( X ) has countable fan tightness and the Reznichenko...

A solution to Comfort's question on the countable compactness of powers of a topological group

Artur Hideyuki Tomita (2005)

Fundamenta Mathematicae

Similarity:

In 1990, Comfort asked Question 477 in the survey book “Open Problems in Topology”: Is there, for every (not necessarily infinite) cardinal number α 2 , a topological group G such that G γ is countably compact for all cardinals γ < α, but G α is not countably compact? Hart and van Mill showed in 1991 that α = 2 answers this question affirmatively under M A c o u n t a b l e . Recently, Tomita showed that every finite cardinal answers Comfort’s question in the affirmative, also from M A c o u n t a b l e . However, the question has...