The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On ramification locus of a polynomial mapping”

On the complexification of real-analytic polynomial mappings of ℝ²

Ewa Ligocka (2006)

Annales Polonici Mathematici

Similarity:

We give a simple algebraic condition on the leading homogeneous term of a polynomial mapping from ℝ² into ℝ² which is equivalent to the fact that the complexification of this mapping can be extended to a polynomial endomorphism of ℂℙ². We also prove that this extension acts on ℂℙ²∖ℂ² as a quotient of finite Blaschke products.

On the dynamics of extendable polynomial endomorphisms of ℝ²

Ewa Ligocka (2007)

Annales Polonici Mathematici

Similarity:

We extend the results obtained in our previous paper, concerning quasiregular polynomials of algebraic degree two, to the case of polynomial endomorphisms of ℝ² whose algebraic degree is equal to their topological degree. We also deal with some other classes of polynomial endomorphisms extendable to ℂℙ².

The determinant of oriented rotants

Adam H. Piwocki (2007)

Colloquium Mathematicae

Similarity:

We study the determinant of pairs of rotants of Anstee, Przytycki and Rolfsen. We consider various notions of rotant orientations.

A note on the nonexistence of spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form

Henrique Fernandes de Lima (2022)

Archivum Mathematicum

Similarity:

We obtain nonexistence results concerning complete noncompact spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form, under the assumption that the support functions with respect to a fixed nonzero vector are linearly related. Our approach is based on a suitable maximum principle recently established by Alías, Caminha and do Nascimento [3].

Combinatorial Nullstellensatz approach to polynomial expansion

Fedor Petrov (2014)

Acta Arithmetica

Similarity:

Applying techniques similar to Combinatorial Nullstellensatz we prove a lower estimate of |f(A,B)| for finite subsets A, B of a field, and a polynomial f(x,y) of the form f(x,y) = g(x) + yh(x), where the degree of g is greater than that of h.