The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A note on groups with few isomorphism classes of subgroups”

Locally graded groups with certain minimal conditions for subgroups (II).

Javier Otal, Juan Manuel Peña (1988)

Publicacions Matemàtiques

Similarity:

This paper deals with one of the ways of studying infinite groups many of whose subgroups have a prescribed property, namely the consideration of minimal conditions. If P is a theoretical property of groups and subgroups, we show that a locally graded group P satisfies the minimal conditions for subgroups not having P if and only if either G is a Cernikov group or every subgroup of G satisfies P, for certain values of P concerning normality, nilpotency and related ideas.

On totally inert simple groups

Martyn Dixon, Martin Evans, Antonio Tortora (2010)

Open Mathematics

Similarity:

A subgroup H of a group G is inert if |H: H ∩ H g| is finite for all g ∈ G and a group G is totally inert if every subgroup H of G is inert. We investigate the structure of minimal normal subgroups of totally inert groups and show that infinite locally graded simple groups cannot be totally inert.

A note on locally graded groups

Patrizia Longobardi, Mercede Maj, Howard Smith (1995)

Rendiconti del Seminario Matematico della Università di Padova

Similarity:

Non-nilpotent subgroups of locally graded groups

Mohammad Zarrin (2015)

Colloquium Mathematicae

Similarity:

We show that a locally graded group with a finite number m of non-(nilpotent of class at most n) subgroups is (soluble of class at most [log₂n] + m + 3)-by-(finite of order ≤ m!). We also show that the derived length of a soluble group with a finite number m of non-(nilpotent of class at most n) subgroups is at most [log₂ n] + m + 1.