Displaying similar documents to “SRB-like Measures for C⁰ Dynamics”

On vector measures which have everywhere infinite variation or noncompact range

Lech Drewnowski, Zbigniew Lipecki

Similarity:

CONTENTS1. Introduction..........................................................................................52. Vector measures with λ-everywhere infinite variation represented by series of simple measures.............113. Semicontinuity of some maps related to the variation map..................................................184. Sets of λ-continuous measures with (λ-) everywhere infinite variation.....................................235. Borel complexity of some spaces of vector...

The multifractal box dimensions of typical measures

Frédéric Bayart (2012)

Fundamenta Mathematicae

Similarity:

We compute the typical (in the sense of Baire’s category theorem) multifractal box dimensions of measures on a compact subset of d . Our results are new even in the context of box dimensions of measures.

Lineability and spaceability on vector-measure spaces

Giuseppina Barbieri, Francisco J. García-Pacheco, Daniele Puglisi (2013)

Studia Mathematica

Similarity:

It is proved that if X is infinite-dimensional, then there exists an infinite-dimensional space of X-valued measures which have infinite variation on sets of positive Lebesgue measure. In term of spaceability, it is also shown that c a ( , λ , X ) M σ , the measures with non-σ-finite variation, contains a closed subspace. Other considerations concern the space of vector measures whose range is neither closed nor convex. All of those results extend in some sense theorems of Muñoz Fernández et al. [Linear...

Simple fractions and linear decomposition of some convolutions of measures

Jolanta K. Misiewicz, Roger Cooke (2001)

Discussiones Mathematicae Probability and Statistics

Similarity:

Every characteristic function φ can be written in the following way: φ(ξ) = 1/(h(ξ) + 1), where h(ξ) = ⎧ 1/φ(ξ) - 1 if φ(ξ) ≠ 0 ⎨ ⎩ ∞ if φ(ξ) = 0 This simple remark implies that every characteristic function can be treated as a simple fraction of the function h(ξ). In the paper, we consider a class C(φ) of all characteristic functions of the form φ a ( ξ ) = [ a / ( h ( ξ ) + a ) ] , where φ(ξ) is a fixed characteristic function. Using the well known theorem on simple fraction decomposition of rational functions we obtain...

Convex Corson compacta and Radon measures

Grzegorz Plebanek (2002)

Fundamenta Mathematicae

Similarity:

Assuming the continuum hypothesis, we show that (i) there is a compact convex subset L of Σ ( ω ) , and a probability Radon measure on L which has no separable support; (ii) there is a Corson compact space K, and a convex weak*-compact set M of Radon probability measures on K which has no G δ -points.

On a decomposition of non-negative Radon measures

Bérenger Akon Kpata (2019)

Archivum Mathematicum

Similarity:

We establish a decomposition of non-negative Radon measures on d which extends that obtained by Strichartz [6] in the setting of α -dimensional measures. As consequences, we deduce some well-known properties concerning the density of non-negative Radon measures. Furthermore, some properties of non-negative Radon measures having their Riesz potential in a Lebesgue space are obtained.

Invariant measures and the compactness of the domain

Marian Jabłoński, Paweł Góra (1998)

Annales Polonici Mathematici

Similarity:

We consider piecewise monotonic and expanding transformations τ of a real interval (not necessarily bounded) into itself with countable number of points of discontinuity of τ’ and with some conditions on the variation V [ 0 , x ] ( 1 / | τ ' | ) which need not be a bounded function (although it is bounded on any compact interval). We prove that such transformations have absolutely continuous invariant measures. This result generalizes all previous “bounded variation” existence theorems.

Can interestingness measures be usefully visualized?

Robert Susmaga, Izabela Szczech (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper presents visualization techniques for interestingness measures. The process of measure visualization provides useful insights into different domain areas of the visualized measures and thus effectively assists their comprehension and selection for different knowledge discovery tasks. Assuming a common domain form of the visualized measures, a set of contingency tables, which consists of all possible tables having the same total number of observations, is constructed. These...

On uniqueness of G-measures and g-measures

Ai Fan (1996)

Studia Mathematica

Similarity:

We give a simple proof of the sufficiency of a log-lipschitzian condition for the uniqueness of G-measures and g-measures which were studied by G. Brown, A. H. Dooley and M. Keane. In the opposite direction, we show that the lipschitzian condition together with positivity is not sufficient. In the special case where the defining function depends only upon two coordinates, we find a necessary and sufficient condition. The special case of Riesz products is discussed and the Hausdorff dimension...

On the complexity of sums of Dirichlet measures

Sylvain Kahane (1993)

Annales de l'institut Fourier

Similarity:

Let M be the set of all Dirichlet measures on the unit circle. We prove that M + M is a non Borel analytic set for the weak* topology and that M + M is not norm-closed. More precisely, we prove that there is no weak* Borel set which separates M + M from D (or even L 0 ) , the set of all measures singular with respect to every measure in M . This extends results of Kaufman, Kechris and Lyons about D and H and gives many examples of non Borel analytic sets.