The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Spectral analysis of unbounded Jacobi operators with oscillating entries”

Unbounded Jacobi Matrices with Empty Absolutely Continuous Spectrum

Petru Cojuhari, Jan Janas (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Sufficient conditions for the absence of absolutely continuous spectrum for unbounded Jacobi operators are given. A class of unbounded Jacobi operators with purely singular continuous spectrum is constructed as well.

Spectral transition parameters for a class of Jacobi matrices

Joanne Dombrowski, Steen Pedersen (2002)

Studia Mathematica

Similarity:

This paper initially considers a class of unbounded Jacobi matrices defined by an increasing sequence of repeated weights. Spectral parameters are then introduced in various ways to allow the authors to study the nature and location of the spectrum as a function of these parameters.

Fermi Golden Rule, Feshbach Method and embedded point spectrum

Jan Dereziński (1998-1999)

Séminaire Équations aux dérivées partielles

Similarity:

A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jak s ˇ ić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.

Spectrum of L

W. Marek, K. Rasmussen

Similarity:

CONTENTS0. Motivation, results to be used in the sequel ................51. Slicing L α ’s ..........................................................102. Hereditarily countable, definable elements ................133. Spectrum of L.............................................................154. The width of elements of spectrum ............................195. Non-uniform strong definability ..................................266. Solution to a problem of Wilmers................................327....

Conditions equivalent to C* independence

Shuilin Jin, Li Xu, Qinghua Jiang, Li Li (2012)

Studia Mathematica

Similarity:

Let and be mutually commuting unital C* subalgebras of (). It is shown that and are C* independent if and only if for all natural numbers n, m, for all n-tuples A = (A₁, ..., Aₙ) of doubly commuting nonzero operators of and m-tuples B = (B₁, ..., Bₘ) of doubly commuting nonzero operators of , S p ( A , B ) = S p ( A ) × S p ( B ) , where Sp denotes the joint Taylor spectrum.

Slowly oscillating perturbations of periodic Jacobi operators in l²(ℕ)

Marcin Moszyński (2009)

Studia Mathematica

Similarity:

We prove that the absolutely continuous part of the periodic Jacobi operator does not change (modulo unitary equivalence) under additive perturbations by compact Jacobi operators with weights and diagonals defined in terms of the Stolz classes of slowly oscillating sequences. This result substantially generalizes many previous results, e.g., the one which can be obtained directly by the abstract trace class perturbation theorem of Kato-Rosenblum. It also generalizes several results concerning...

Ascent spectrum and essential ascent spectrum

O. Bel Hadj Fredj, M. Burgos, M. Oudghiri (2008)

Studia Mathematica

Similarity:

We study the essential ascent and the related essential ascent spectrum of an operator on a Banach space. We show that a Banach space X has finite dimension if and only if the essential ascent of every operator on X is finite. We also focus on the stability of the essential ascent spectrum under perturbations, and we prove that an operator F on X has some finite rank power if and only if σ a s c e ( T + F ) = σ a s c e ( T ) for every operator T commuting with F. The quasi-nilpotent part, the analytic core and the single-valued...

Local spectrum and local spectral radius of an operator at a fixed vector

Janko Bračič, Vladimír Müller (2009)

Studia Mathematica

Similarity:

Let be a complex Banach space and e ∈ a nonzero vector. Then the set of all operators T ∈ ℒ() with σ T ( e ) = σ δ ( T ) , respectively r T ( e ) = r ( T ) , is residual. This is an analogy to the well known result for a fixed operator and variable vector. The results are then used to characterize linear mappings preserving the local spectrum (or local spectral radius) at a fixed vector e.

On the generalized Kato spectrum

Benharrat, Mohammed, Messirdi, Bekkai (2011)

Serdica Mathematical Journal

Similarity:

2010 Mathematics Subject Classification: 47A10. We show that the symmetric difference between the generalized Kato spectrum and the essential spectrum defined in [7] by sec(T) = {l О C ; R(lI-T) is not closed } is at most countable and we also give some relationship between this spectrum and the SVEP theory.