Displaying similar documents to “Toeplitz Quantization for Non-commutating Symbol Spaces such as S U q ( 2 )

Notes on unbounded Toeplitz operators in Segal-Bargmann spaces

D. Cichoń (1996)

Annales Polonici Mathematici

Similarity:

Relations between different extensions of Toeplitz operators T φ are studied. Additive properties of closed Toeplitz operators are investigated, in particular necessary and sufficient conditions are given and some applications in case of Toeplitz operators with polynomial symbols are indicated.

Generalization of the Newman-Shapiro isometry theorem and Toeplitz operators. II

Dariusz Cichoń (2002)

Studia Mathematica

Similarity:

The Newman-Shapiro Isometry Theorem is proved in the case of Segal-Bargmann spaces of entire vector-valued functions (i.e. summable with respect to the Gaussian measure on ℂⁿ). The theorem is applied to find the adjoint of an unbounded Toeplitz operator T φ with φ being an operator-valued exponential polynomial.

Spectral approximation for Segal-Bargmann space Toeplitz operators

Albrecht Böttcher, Hartmut Wolf (1997)

Banach Center Publications

Similarity:

Let A stand for a Toeplitz operator with a continuous symbol on the Bergman space of the polydisk N or on the Segal-Bargmann space over N . Even in the case N = 1, the spectrum Λ(A) of A is available only in a few very special situations. One approach to gaining information about this spectrum is based on replacing A by a large “finite section”, that is, by the compression A n of A to the linear span of the monomials z 1 k 1 . . . z N k N : 0 k j n . Unfortunately, in general the spectrum of A n does not mimic the spectrum...

Carleson measures and Toeplitz operators on small Bergman spaces on the ball

Van An Le (2021)

Czechoslovak Mathematical Journal

Similarity:

We study Carleson measures and Toeplitz operators on the class of so-called small weighted Bergman spaces, introduced recently by Seip. A characterization of Carleson measures is obtained which extends Seip’s results from the unit disk of to the unit ball of n . We use this characterization to give necessary and sufficient conditions for the boundedness and compactness of Toeplitz operators. Finally, we study the Schatten p classes membership of Toeplitz operators for 1 < p < .

Product equivalence of quasihomogeneous Toeplitz operators on the harmonic Bergman space

Xing-Tang Dong, Ze-Hua Zhou (2013)

Studia Mathematica

Similarity:

We present here a quite unexpected result: If the product of two quasihomogeneous Toeplitz operators T f T g on the harmonic Bergman space is equal to a Toeplitz operator T h , then the product T g T f is also the Toeplitz operator T h , and hence T f commutes with T g . From this we give necessary and sufficient conditions for the product of two Toeplitz operators, one quasihomogeneous and the other monomial, to be a Toeplitz operator.

Bounded Toeplitz and Hankel products on weighted Bergman spaces of the unit ball

Małgorzata Michalska, Maria Nowak, Paweł Sobolewski (2010)

Annales Polonici Mathematici

Similarity:

We prove a sufficient condition for products of Toeplitz operators T f T , where f,g are square integrable holomorphic functions in the unit ball in ℂⁿ, to be bounded on the weighted Bergman space. This condition slightly improves the result obtained by K. Stroethoff and D. Zheng. The analogous condition for boundedness of products of Hankel operators H f H * g is also given.

The essential spectrum of Toeplitz tuples with symbols in H + C

Jörg Eschmeier (2013)

Studia Mathematica

Similarity:

Let H²(D) be the Hardy space on a bounded strictly pseudoconvex domain D ⊂ ℂⁿ with smooth boundary. Using Gelfand theory and a spectral mapping theorem of Andersson and Sandberg (2003) for Toeplitz tuples with H -symbol, we show that a Toeplitz tuple T f = ( T f , . . . , T f ) L ( H ² ( σ ) ) m with symbols f i H + C is Fredholm if and only if the Poisson-Szegö extension of f is bounded away from zero near the boundary of D. Corresponding results are obtained for the case of Bergman spaces. Thus we extend results of McDonald (1977) and...

Slant Hankel operators

Subhash Chander Arora, Ruchika Batra, M. P. Singh (2006)

Archivum Mathematicum

Similarity:

In this paper the notion of slant Hankel operator K ϕ , with symbol ϕ in L , on the space L 2 ( 𝕋 ) , 𝕋 being the unit circle, is introduced. The matrix of the slant Hankel operator with respect to the usual basis { z i : i } of the space L 2 is given by α i j = a - 2 i - j , where i = - a i z i is the Fourier expansion of ϕ . Some algebraic properties such as the norm, compactness of the operator K ϕ are discussed. Along with the algebraic properties some spectral properties of such operators are discussed. Precisely, it is proved that for...

Deformation quantization and Borel's theorem in locally convex spaces

Miroslav Engliš, Jari Taskinen (2007)

Studia Mathematica

Similarity:

It is well known that one can often construct a star-product by expanding the product of two Toeplitz operators asymptotically into a series of other Toeplitz operators multiplied by increasing powers of the Planck constant h. This is the Berezin-Toeplitz quantization. We show that one can obtain in a similar way in fact any star-product which is equivalent to the Berezin-Toeplitz star-product, by using instead of Toeplitz operators other suitable mappings from compactly supported smooth...

The K-theory of the triple-Toeplitz deformation of the complex projective plane

Jan Rudnik (2012)

Banach Center Publications

Similarity:

π j i : B i B i j = B j i , i,j ∈ 1,2,3, i ≠ j, of C*-epimorphisms assuming that it satisfies the cocycle condition. Then we show how to compute the K-groups of the multi-pullback C*-algebra of such a family, and exemplify it in the case of the triple-Toeplitz deformation of ℂP².