Displaying similar documents to “A linear programming approach to error bounds for random walks in the quarter-plane”

Random walk in random environment with asymptotically zero perturbation

M.V. Menshikov, Andrew R. Wade (2006)

Journal of the European Mathematical Society

Similarity:

We give criteria for ergodicity, transience and null-recurrence for the random walk in random environment on + = { 0 , 1 , 2 , } , with reflection at the origin, where the random environment is subject to a vanishing perturbation. Our results complement existing criteria for random walks in random environments and for Markov chains with asymptotically zero drift, and are significantly different from the previously studied cases. Our method is based on a martingale technique—the method of Lyapunov functions. ...

Random walk centrality and a partition of Kemeny's constant

Stephen J. Kirkland (2016)

Czechoslovak Mathematical Journal

Similarity:

We consider an accessibility index for the states of a discrete-time, ergodic, homogeneous Markov chain on a finite state space; this index is naturally associated with the random walk centrality introduced by Noh and Reiger (2004) for a random walk on a connected graph. We observe that the vector of accessibility indices provides a partition of Kemeny's constant for the Markov chain. We provide three characterizations of this accessibility index: one in terms of the first return time...

Scaling of a random walk on a supercritical contact process

F. den Hollander, R. S. dos Santos (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We prove a strong law of large numbers for a one-dimensional random walk in a dynamic random environment given by a supercritical contact process in equilibrium. The proof uses a coupling argument based on the observation that the random walk eventually gets trapped inside the union of space–time cones contained in the infection clusters generated by single infections. In the case where the local drifts of the random walk are smaller than the speed at which infection clusters grow, the...

Strong disorder in semidirected random polymers

N. Zygouras (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a random walk in a random potential, which models a situation of a random polymer and we study the annealed and quenched costs to perform long crossings from a point to a hyperplane. These costs are measured by the so called Lyapounov norms. We identify situations where the point-to-hyperplane annealed and quenched Lyapounov norms are different. We also prove that in these cases the polymer path exhibits localization.